Solar System Research

, Volume 51, Issue 2, pp 104–120 | Cite as

Antarctica as a testing ground for manned missions to the Moon and Mars

Article
  • 66 Downloads

Abstract

This paper is concerned with the study of expedition activity in Antarctica as a part of the search for useful analogies and solutions which can be taken into account in planning manned missions to the Moon and Mars. The following is considered: natural analogies, human factors, station facilities, means of transportation, scientific programs, safety issues, and historical and political analogies. A rationalization is given for the idea of creating a testing ground in Antarctica (stations Vostok, Novolazarevskaya, Jetty Oasis) for ground-based simulation of functioning of a lunar and Martian base.

Keywords

Antarctica Vostok Station Mars Moon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, A.A. and Demidov, N.E., Searching for the most ancient permafrost on the Earth in the Dry Valleys of Antarctica, Ross. Polyarn. Issled., 2015, no. 1 (19), pp. 36–40.Google Scholar
  2. Abramov, A.A., Sletten, R., Rivkina, E.M., Mironov, V.A., and Gilichinsky, D.A., Geocryological conditions of Antarctica, Kriosfera Zemli, 2011, vol. 15, no. 3, pp. 3–19.Google Scholar
  3. Abyzov, S.S., Microorganisms in the Antarctic ice, in Antarctic Microbiology, Friedmann, E.I., Ed., New York: Wiley, 1993, pp. 265–295.Google Scholar
  4. Andersen, D.T., McKay, C.P., Wharton, R.A., and Rummel, J.D., An Antarctic research outpost as a model for planetary exploration, J. Br. Interplanet. Soc., 1990, vol. 43, pp. 499–504.ADSGoogle Scholar
  5. Atlas Antarktiki (Atlas of Antarctica), Tolstikova, E.I., Ed., Leningrad: Gidrometeoizdat, 1969, vol. 2.Google Scholar
  6. Barmin, I.V. and Egorov, V.A., Projects of the space era. Lunar settlement project, Tekhnika–Molodezhi, 2003, no. 6, pp. 30–35.Google Scholar
  7. Bulat, S.A., Alekhina, I.A., and Blot, M., DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments, Int. J. Astrobiol., 2004, vol. 3, pp. 1–7.CrossRefGoogle Scholar
  8. Demidov, N.E., Bazilevsky, A.T., and Kuzmin, R.O., Martian soils: varieties, structure, composition, physical properties, drillability and risks for landers, Sol. Syst. Res., 2015, vol. 49, no. 4, pp. 209–225.ADSCrossRefGoogle Scholar
  9. Demidov, N.E., Gilichinsky, D.A., Boynton, W.V., Hamara, D., Zuber, M.T., Kozyrev, A.S., Litvak, M.L., Mitrofanov, I.G., Sanin, A.B., Tretyakov, V.I., Saunders, R.S., and Smith, D.E., Water distribution in martian permafrost regions from joint analysis of HEND (Mars Odyssey) and MOLA (Mars Global Surveyor) data, Astron. Lett., 2008, vol. 34, no. 10, pp. 713–723.ADSCrossRefGoogle Scholar
  10. Demidov, N.E., Gilichinsky, D.A., Mironov, V.A., and Shmakova, L.A., Cryobiosphere of the Earth and the search for life on Mars, Kriosfera Zemli, 2012, vol. 16, no. 4, pp. 67–82.Google Scholar
  11. Demidov, N.E., Verkulich, S.R., and Rivkina, E.M., Astrobiological aspect of Russian permafrost research in Arctic, Antarctic and in the Moon and Mars poles, Ross. Polyarn. Issled., 2014, no. 4 (18), pp. 6–8.Google Scholar
  12. Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets, Bar-Cohen, Y. and Zacny, K., Eds., Hoboken, NJ: Wiley, 2009.Google Scholar
  13. Gilichinsky, M., Demidov, N., and Rivkina, E., Morphometry of volcanic cones on Mars in perspective of astrobiological research, Int. J. Astrobiol., 2015, vol. 14, no. 4, pp. 537–545.CrossRefGoogle Scholar
  14. Gilichinsky, D., Wilson, G., Friedmann, E., McKay, C., Sletten, R., and Rivkina, E., Microbial populations in Antarctic permafrost: Biodiversity, state, age, and implication for astrobiology, Astrobiology, 2007, vol. 7, pp. 275–311.ADSCrossRefGoogle Scholar
  15. Glubokovskikh, M.K., Glubokov, A.I., and Lukin, V.V., Position of Russia in the world fisheries system: change of objectives, Rybn. Khoz., 2014, no. 2, pp. 3–9.Google Scholar
  16. Gómez-Elvira, J., Armiens, C., Carrasco, I., Genzer, M., Gómez, F., Haberle, R., Hamilton, V.E., Harri, A.-M., Kahanpää, H., Keppinen, O., Lepinette, A., Martín-Soler, J., Martín-Torres, J., Martínez-Frías, J., Mischna, M., et al., Curiosity’s rover environmental monitoring station: overview of the first 100 sols, J. Geophys. Res.: Planets, 2014, vol. 119, pp. 1680–1688. doi 10.1002/2013JE00457ADSCrossRefGoogle Scholar
  17. Goordial, J., Davila, A., Lacelle, D., Pollard, W., Marinova, M., Creer, C., DiRuggiero, J., McKay, C., and Whyte, L., Nearing the cold-arid limits of microbial life in permafrost, ISME J., 2016, vol. 10, no. 7, pp. 1–12.CrossRefGoogle Scholar
  18. Gorbunov, G.A., Kozak, V.F., Klopov, V.P., Senkevich, Yu.I., and Krylenkov, V.A., Meditsinskoe obespechenie Rossiiskoi Antarkticheskoi ekpeditsii (Medical Support of the Russian Antarctic Expedition), St. Petersburg: Arkt. Antarkt. Nauchno-Issled. Inst., 2009.Google Scholar
  19. Grotzinger, J.P., Sumner, D.Y., Kah, L.C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P.G., DesMarais, D., Farmer, J., Siebach, K., et al., A habitable fluvio-lacustrine environment at Yellowknife bay, Gale Crater, Mars, Science, 2014, vol. 343. doi 10.1126/science.1242777Google Scholar
  20. Herbold, C.W., Lee, C.K., McDonald, I.R., and Cary, S.C., Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica, Nat. Commun., 2014, vol. 5. doi 10.1038/ncomms4875Google Scholar
  21. Hvidberg, C.S., Polar caps, in Advances in Astrobiology and Biogeophysics, Vol. 4: Water on Mars and Life, Tokano, T., Ed., New York: Springer-Verlag, 2005, pp. 129–152.Google Scholar
  22. Kuzmin, R.O., Ground ice in the Martian regolith, in Advances in Astrobiology and Biogeophysics, Vol. 4: Water on Mars and Life, Tokano, T., Ed., New York: Springer-Verlag, 2005, pp. 155–189.Google Scholar
  23. Leonov, A.A. and Lebedev, V.I., Psikhologicheskie problemy mezhplanetnogo poleta (Psychological Problems during Interplanetary Flight), Moscow: Nauka, 1975.Google Scholar
  24. Lukin, V.V., Klokov, V.D., and Pomelov, V.N., Sistema dogovora ob Antarktike. Pravovye akty, kommentarii (The Antarctic Treaty System: Legal Acts and Comments), St. Petersburg: Gidrometeoizdat, 2002.Google Scholar
  25. Lukin, V.V., Kornilov, N.A., and Dmitriev, N.K., Sovetskie i Rossiiskie Antarkticheskie ekspeditsii v tsifrakh i faktakh (1955–2005 gg.) (Soviet and Russian Antarctic Expeditions in Figures and Facts (1955–2005)), St. Petersburg: Arkt. Antarkt. Nauchno-Issled. Inst., 2006.Google Scholar
  26. Lukin, V.V. and Vasiliev, N.I., Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok subglacial Lake, East Antarctica, Ann. Glaciol., 2014, vol. 55 (65), pp. 83–89.ADSCrossRefGoogle Scholar
  27. Lunar Bases and Space Activities of 21st Century, Chap. 6: Lunar Construction, Houston: Lunar Planet. Inst., 1985, pp. 361–430.Google Scholar
  28. Malina, F.J., The lunar laboratory, Science, 1969, vol. 5, special issue, pp. 108–113.Google Scholar
  29. Martin, J.L., Expedition Mars, New York: Springer-Verlag, 2004.Google Scholar
  30. Martinez, G.M., Renno, N.O., Hoffman, J.H., Elliott, H.M., and Fischer, E., Near surface water vapor pressure and relative humidity on Mars: New values obtained from the Phoenix mass spectrometer, 44th Lunar and Planetary Science Conf., Houston: Lunar Planet. Inst., 2013, no.2994.Google Scholar
  31. Matusov, A.L., Usloviya zhizni i sostoyanie zdorov’ya ucheastnikov polyarnykh ekspeditsii (The Living Conditions and Health of Members of the Polar Expeditions), Leningrad: Gidrometeoizdat, 1979.Google Scholar
  32. McKay, C.P., Stoker, C.R., Glass, B.J., Davé, A.I., Davila, A.F., Heldmann, J.L., Marinova, M.M., Fairen, A.G., Quinn, R.C., Zacny, K.A., Paulsen, G., Smith, P.H., Parro, V., Andersen, D.A., Hecht, M.H., et al., The icebreaker life mission to Mars: a search for biomolecular evidence for life, Astrobiology, 2013, vol. 13, no. 4, pp. 334–353. doi 10.1089/ast.2012.0878ADSCrossRefGoogle Scholar
  33. Mironov, V.A., Shcherbakova, V.A., Rivkina, E.M., and Gilichinsky, D.A., Thermophilic bacteria of the genus Geobacillus from permafrost volcanic sedimentary rocks, Microbiology (Moscow), 2013, vol. 82, no. 3, pp. 389–392.CrossRefGoogle Scholar
  34. Mitrofanov, I.G., et al., Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND, Science, 2010, vol. 330, pp. 483–485.ADSCrossRefGoogle Scholar
  35. Mitrofanov, I.G., Litvak, M.L., Kozyrev, A.S., Sanin, A.B., Tret’yakov, V.I., Grin’kov, V.Yu., Boynton, W.V., Shinohara, C., Hamara, D., and Saunders, S., Soil water content on Mars as estimated from neutron measurements by the HEND instrument onboard the 2001 Mars Odyssey spacecraft, Sol. Syst. Res., 2004, vol. 38, no. 4, pp. 253–265.ADSCrossRefGoogle Scholar
  36. Navarro-Gonzalez, R., Navarro, K.F., de la Rosa, J., Iniguez E., Molina, P., Miranda, L.A., Morales, P., Cienfuegos, E., Coll, P., Raulina, F., Amils, R., and McKay, C.P., The limitations on organic detection in Mars-like soils by thermal volatization—gas chromatography–MS and their implications for the Viking results, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 44, pp. 16089–16094.ADSCrossRefGoogle Scholar
  37. Palinkas, L.A., Antarctica as a Model for Human Exploration of Mars: Report No. 87–16, San Diego: Naval Health Res. Center, 1987.CrossRefGoogle Scholar
  38. Pilotiruemaya ekspeditsiya na Mars (Manned Expedition to Mars), Korotaeva, A.S., Ed., Moscow: Ross. Akad. Kosmonavtiki im. K.E. Tsiolkovskogo, 2006.Google Scholar
  39. Savatyugin, L.M., Nauchno-tekhnicheskoe opisanie prirodnykh uslovii i material’no-tekhnicheskikh struktur stantsii Rossiiskoi antarkticheskoi ekspeditsii s otsenkoi ikh vozdeistviya na okruzhayushchuyu sredu. Tom 7. Stantsiya Russkaya (Scientific and Technical Description of Environmental Conditions and Logistic Structure of the Station of Russian Antarctic Expedition with Evaluation of Their Environmental Impact, Vol. 7: Russkaya Station), St. Petersburg: Arkt. Antarkt. Nauchno- Issled. Inst., 1995.Google Scholar
  40. Senkevich, Yu.A., Prophylactics of blood circulation dysfunctions caused by hypokinesia using physical training and hypoxia, Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 1974.Google Scholar
  41. Siegert, M.J., Ellis-Evans, J.C., Tranter, M., Mayer, C., Petit, J.-R., Salamatin, A., and Priscu, J.C., Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes, Nature, 2001, vol. 144, pp. 603–609.ADSCrossRefGoogle Scholar
  42. Stuhlinger, E., Antarctic research. A prelude to space research, Antarct. J. U.S., 1969, vol. 4, pp. 1–7.Google Scholar
  43. Vitale, V., Petkov, B., Goutail, F., Lanconelli, C., Lupi, A., Mazzola, M., Busetto, M., Pazmino, A., Schioppo, R., Genoni, L., and Tomasi, C., Variations of UV irradiance at Antarctic station Concordia during the springs of 2008 and 2009, Antarct. Sci., 2011, vol. 23, no. 4, pp. 389–398.CrossRefGoogle Scholar
  44. Zelenyi, L., Mitrofanov, I., Petrukovich, A., Khartov, V., Martynov, M., and Doolgopolov, V., Shevchenko, V., Russian lunar space program, The 40th COSPAR Scientific Assembly, August 2–10, 2014, Moscow, 2014, no. B0.1000514.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Institute of Physical-Chemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchinoRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Arctic and Antarctic Research Institute, Saint-PetersburgMoscowRussia

Personalised recommendations