Solar System Research

, Volume 49, Issue 7, pp 509–517 | Cite as

Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission

  • L. M. ZelenyiEmail author
  • O. I. Korablev
  • D. S. Rodionov
  • B. S. Novikov
  • K. I. Marchenkov
  • O. N. Andreev
  • E. V. Larionov


The paper lists the main objectives of the scientific complex of the landing platform of the ExoMars-2018 mission. Scientific instruments of the complex are described including the meteorological complex, Fourier spectrometer, radiothermometer, Martian gas analytical complex, dust complex, seismometer, etc. The main studies and results that will be obtained using this scientific equipment are presented.


landing platform ExoMars-2018 Mars complex of scientific equipment Fourier spectrometer meteorological complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.L., et al., The Viking seismic experiment, Science, 1976, vol. 194, pp. 1318–1321.Google Scholar
  2. Anderson, D.L., et al., Seismology on Mars, J. Geophys. Res., 1977, vol. 82, pp. 4524–4546.ADSCrossRefGoogle Scholar
  3. Avduevskii, V.S., et al., Mars atmosphere in the point of-Mars 6 landing. Preliminary results, Kosm. Issl., 1975, vol. 13, pp. 21–32.Google Scholar
  4. Banerdt, W.B., et al., InSight: a discovery mission to explore the interior of Mars, Proc. Lunar and Planetary Sci. Conf., Houston, 2013, vol. 44, p. 1915.ADSGoogle Scholar
  5. Biele, J., et al., GEP ExoMars: a geophysics and environment observatory on Mars, Proc. Lunar and Planetary Sci. Conf., Houston, 2007, vol. 38, p. 1587.ADSGoogle Scholar
  6. Dehant, V., et al., Network science, NetLander: a European mission to study the planet Mars, Planet. Space Sci., 2004, vol. 52, pp. 977–985.ADSCrossRefGoogle Scholar
  7. Durry, G., et al., Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission, Appl. Phys. B: Lasers Opt., 2010, vol. 99, pp. 339–351.ADSCrossRefGoogle Scholar
  8. Efanov, V.V., Martynov, M.B., and Pichkhadze, K.M., Space robots for scientific researches, Nauka Rossii, 2012, no. 1, pp. 4–14.Google Scholar
  9. Esposito, F., et al., DIAMOND: an impact sensor for the characterization of Martian dust tori, Memorie della Societa Astronomica Italiana Supplementi, 2011, vol. 16, p. 125.ADSGoogle Scholar
  10. Gerasimov, M.V., et al., Gas-analytic package for the Russian Luna-Globe and Lunar-Resource missions, Proc. EPSC DPS Joint Meeting, Nantes, 2011a, p. 956.Google Scholar
  11. Gerasimov, M.V., et al., Gas chromatography complex (TDA, KhMS, MAL 1F), in Fobos Grunt, proekt kosmicheskoi ekspeditsii. NPO im. S.A. Lavochkina (Phobos-Grunt. Space Expedition Project of Lavochkin Research and Production Association), 2011b, pp. 249–269.Google Scholar
  12. Gerasimov, M.V., et al., The Martian gas-analytic package for the landing platform experiments of the ExoMars 2018, Proc. Lunar and Planetary Sci. Conf., Houston, 2014, vol. 45, p. 1242.ADSGoogle Scholar
  13. Gomez Elvira, J., et al., REMS: the environmental sensor suite for the Mars Science Laboratory Rover, Space Sci. Rev., 2012, vol. 170, pp. 583–640.ADSCrossRefGoogle Scholar
  14. Haberle, R.M., et al., The Pascal discovery mission: a Mars climate network mission, in Proc. Concepts and Approaches for Mars Exploration Workshop, 2000, p. 135.Google Scholar
  15. Harri, A.M., et al., MetNet atmospheric science network for Mars, in Mars Atmosphere Modelling and Observations, Forget, F., Ed., 2006, p. 724.Google Scholar
  16. Harri, A.M., et al., Mars MetNet Precursor mission status, Proc. European Planetary Sci. Congress, London, Sept. 8–13, 2013, vol. 8, p. 499, id.EPSC2013-499. http://meetingscopernicusorg/epsc2013%3C/A%3EGoogle Scholar
  17. Hess, S.L., et al., The annual cycle of pressure on Mars measured by Viking Landers 1 and 2, Geophys. Res. Lett., 1980, vol. 7, pp. 197–200.ADSCrossRefGoogle Scholar
  18. Korablev, O.I., et al., AOST: Fourier spectrometer for studying Mars and Phobos, Solar Syst. Res., 2012, vol. 46, no. 1, p. 31.ADSCrossRefGoogle Scholar
  19. Korablev, O.I., Mars spectroscopy by the spacecrafts: new methods, and new results, Usp. Fiz. Nauk, 2013, vol. 183, pp. 762–769.CrossRefGoogle Scholar
  20. Korablev, O.I., Monmessin, F., Fedorova, A.A., Ignat’ev, N.I., et al., ACS experiment for atmospheric studies on “ExoMars-2016” Orbiter, Vestn. Nauch.-Proizv. Ob”ed. im. S.A. Lavochkina, 2014a, no. 2, pp. 33–41.Google Scholar
  21. Korablev, O., et al., Three infrared spectrometers, an atmospheric chemistry suite for the “ExoMars-2016” trace gas orbiter, J. Appl. Remote Sensing, 2014b, vol. 8, p. 084983.ADSCrossRefGoogle Scholar
  22. Linkin, V., et al., A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars 96 small station, Planet. Space Sci., 1998, vol. 46, pp. 717–737.ADSCrossRefGoogle Scholar
  23. Lognonne, P., Planetary seismology, Annu. Rev. Earth Planet. Sci., 2005, vol. 33, pp. 571–604.ADSCrossRefGoogle Scholar
  24. Magalhaes, J.A., et al., Results of the Mars Pathfinder atmospheric structure investigation, J. Geophys. Res., 1999, vol. 104, pp. 8943–8956.ADSCrossRefGoogle Scholar
  25. Managadze, G.G., et al., Study of the main geochemical characteristics of Phobos’ regolith using laser time offlight mass spectrometry, Solar Syst. Res., 2010, vol. 44, pp. 376–384.ADSCrossRefGoogle Scholar
  26. Marov, M.Ya., et al., TERMOFOB experiment: direct researches of thermal-physical properties of Phobos’ soil, in Fobos Grunt, proekt kosmicheskoi ekspeditsii NPO im. S.A. Lavochkina (Phobos-Grunt. Project of Lavochkin Research and Production Association Space Expedition), 2011, pp. 363–374.Google Scholar
  27. Mitrofanov, I.G., et al., The Mercury Gamma and Neutron Spectrometer (MGNS) on board the planetary orbiter of the BepiColombo mission, Planet. Space Sci., 2010, vol. 58, pp. 116–124.ADSCrossRefGoogle Scholar
  28. Mitrofanov, I.G., et al., Dynamic Albedo of Neutrons (DAN) experiment onboard NASA’s Mars science laboratory, Space Sci. Rev., 2012, vol. 170, pp. 559–582.ADSCrossRefGoogle Scholar
  29. Nikiforov, S., et al., Neutron detector ADRON-RM for “ExoMars 2018, Proc. EGU General Assembly Conf., 2013, vol. 15, p. 9506.Google Scholar
  30. Rodin, A., et al., High resolution heterodynespectroscopy of the atmospheric methane NIR absorption, Opt. Express, 2014, vol. 22, no. 11, pp. 13825–13834.ADSCrossRefGoogle Scholar
  31. Seiff, A. and Kirk, D.B., Structure of Mars’ atmosphere up to 100 kilometers from the entry measurements of Viking 2, Science, 1976, vol. 194, pp. 1300–1303.ADSCrossRefGoogle Scholar
  32. Smith, M.D., et al., One Martian year of atmospheric observations using MER Mini-Tes, J. Geophys. Res. (Planets), 2006, vol. 111, no. E12.Google Scholar
  33. Surkov, Y.A. and Kremnev, R.S., Mars-96 mission: Mars exploration with the use of penetrators, Planet. Space Sci., 1998, vol. 46, pp. 1689–1696.ADSCrossRefGoogle Scholar
  34. Vago, J., Witasse, O., Baglioni, P., and Haldemann, A., “ExoMars” program: ESA–next step of Mars scientific research, Vestn. Federal. Gos. Unitarn. Predpr. Nauch.-Proizv. Ob”ed. im. S.A. Lavochkina, 2014, no. 2, pp. 22–32.Google Scholar
  35. Wurz, P., et al., A neutral gas mass spectrometer for the investigation of lunar volatiles, Planet. Space Sci., 2012, vol. 74, pp. 264–269.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • L. M. Zelenyi
    • 1
    Email author
  • O. I. Korablev
    • 1
    • 2
  • D. S. Rodionov
    • 1
  • B. S. Novikov
    • 1
  • K. I. Marchenkov
    • 1
  • O. N. Andreev
    • 1
  • E. V. Larionov
    • 1
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations