Advertisement

Solar System Research

, Volume 49, Issue 7, pp 529–537 | Cite as

ACS experiment for atmospheric studies on “ExoMars-2016” Orbiter

  • O. I. Korablev
  • F. Montmessin
  • A. A. Fedorova
  • N. I. Ignatiev
  • A. V. Shakun
  • A. V. Trokhimovskiy
  • A. V. Grigoriev
  • K. A. Anufreichik
  • T. O. Kozlova
Article

Abstract

ACS is a set of spectrometers for atmospheric studies (Atmospheric Chemistry Suite). It is one of the Russian instruments for the Trace Gas Orbiter (TGO) of the Russian-European “ExoMars” program. The purpose of the experiment is to study the Martian atmosphere by means of two observations regimes: sensitive trace gases measurements in solar occultations and by monitoring the atmospheric state during nadir observations. The experiment will allow us to approach global problems of Mars research such as current volcanism, and the modern climate status and its evolution. Also, the experiment is intended to solve the mystery of methane presence in the Martian atmosphere. Spectrometers of the ACS set cover the spectral range from the near IR-range (0.7 μm) to the thermal IR-range (17 μm) with spectral resolution λ/Δλ reaching 50000. The ACS instrument consists of three independent IR spectrometers and an electronics module, all integrated in a single unit with common mechanical, electrical and thermal interfaces. The article gives an overview of scientific tasks and presents the concept of the experiment.

Keywords

Mars atmosphere methane isotopes solar occultations remote sensing high-resolution spectrometer Fourier spectrometer echelle grating cross dispersion acousto-optical filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atreya, S., et al., Methane and related trace species on mars: origin, loss, implications for life, and habitability, Planet. Space Sci., 2007, vol. 55, pp. 358–369.ADSCrossRefGoogle Scholar
  2. Bertaux, J.L., et al., SPICAM on Mars Express: observing modes and overview of UVspectrometer data and scientific results, J. Geophys. Res.-Planets, 2006, vol. 111, p. E10S90.ADSGoogle Scholar
  3. Bertaux, J.L., et al., SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere, Planet. Space Sci., 2007, vol. 55, pp. 673–1700.CrossRefGoogle Scholar
  4. Bertaux, J.L., et al., First detection of O2 1.27 µm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions, J. Geophys. Res. (Planets), 2012, vol. 117, p. E00J04.ADSCrossRefGoogle Scholar
  5. Blamont, J., et al., Vertical profiles of dust and ozone in the Martian atmosphere deduced from solar occultation measurements, Nature, 1989, vol. 341, pp. 600–603.ADSCrossRefGoogle Scholar
  6. Cantor, B.A., et al., Eyes in the sky with the ExoMars Trace Gas Orbiter Mars Atmospheric Global Imaging Experiment (TGO MAGIE), in Mars Atmosphere: Modelling and Observation, 2011, pp. 493–495.Google Scholar
  7. Christensen, P.R., et al., Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results, J. Geophys. Res., 2001, vol. 106, pp. 23823–23872.ADSCrossRefGoogle Scholar
  8. Encrenaz, T., et al., A stringent upper limit to SO2 in the Martian atmosphere, Astron. Astrophys., 2011, vol. 530, p. A37.ADSCrossRefGoogle Scholar
  9. Fedorova, A., et al., Observation of O2 1.27 µm dayglow by SPICAM IR: seasonal distribution for the first Martian year of Mars Express, J. Geophys. Res. (Planets), 2006, vol. 111, p. E09S07.ADSGoogle Scholar
  10. Fedorova, A.A., et al., The O2 nightglow in the Martian atmosphere by SPICAM onboard of Mars Express, Icarus, 2012, vol. 219, pp. 596–608.ADSCrossRefGoogle Scholar
  11. Forget, F., Improved optical properties of the Martian atmospheric dust for radiative transfer calculations in the infrared, Geophys. Rev. Lett., 1998, vol. 25, pp. 1105–1108.ADSCrossRefGoogle Scholar
  12. Formisano, V., et al., Detection of methane in the atmosphere of Mars, Science, 2004, vol. 306, pp. 1758–1761.ADSCrossRefGoogle Scholar
  13. Formisano, V., et al., The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission, Planet. Space Sci., 2005, vol. 53, pp. 963–974.ADSCrossRefGoogle Scholar
  14. Hanel, R., et al., Investigation of the Martian environment by infrared spectroscopy on Mariner 9 (A 5.2), Icarus, 1972, vol. 17, p. 423.ADSCrossRefGoogle Scholar
  15. Korablev, O.I., Bertaux, J.L., and Vinogradov, I.I., Compact high resolution IRspectrometer for atmospheric studies, Proc. SPIE—Int. Soc. Opt. Eng., 2002, vol. 4818, pp. 272–281.ADSGoogle Scholar
  16. Korablev, O., Moroz, V.I., Petrova, E.V., and Rodin, A.V., Optical properties of dust and the opacity of the Martian atmosphere, Adv. Space Res., 2005, vol. 35, pp. 21–30.ADSCrossRefGoogle Scholar
  17. Korablev, O., et al., SPICAM IR acousto-optic spectrometer experiment on Mars Express, J. Geophys. Res. Planets, 2006, vol. 111, p. E09S03.ADSCrossRefGoogle Scholar
  18. Korablev, O.I., et al., RUSALKA device for measuring carbon dioxide and methane content in the atmosphere performed by ISS, Opt. Zh., 2011, vol. 78, no. 5, pp. 44–58.Google Scholar
  19. Korablev, O.I., et al., AOST: Fourier spectrometer for studying Mars and Phobos, Solar Syst. Res., 2012, vol. 46, no. 1, p. 31.ADSCrossRefGoogle Scholar
  20. Korablev, O., et al., Atmospheric chemistry suite (ACS): a set of infrared spectrometers for atmospheric measurements on board ExoMars trace gas orbiter, Proc. SPIE—Int. Soc. Opt. Eng., 2013a, vol. 8867, Id. 886709.Google Scholar
  21. Korablev, O., et al., Compact echelle spectrometer for occultation sounding of the Martian atmosphere: design and performance, Appl. Opt., 2013b, vol. 52, pp. 1054–1065.ADSCrossRefGoogle Scholar
  22. Korablev, O.I., Mars spectroscopy by spacecrafts: new methods, and new results, Usp. Fiz. Nauk, 2013c, vol. 183, pp. 762–769.CrossRefGoogle Scholar
  23. Korablev, O., et al., Three infrared spectrometers, an Atmospheric Chemistry Suite (ACS) for ExoMars 2016 Trace Gas Orbiter, J. Appl. Remote Sensing, 2014 (in press).Google Scholar
  24. Krasnopolsky, V.A., et al., Infrared solar occultation sounding of the Martian atmosphere by the Phobos spacecraft, Icarus, 1991, vol. 9, pp. 32–44.ADSCrossRefGoogle Scholar
  25. Krasnopolsky, V., et al., High resolution spectroscopy of Mars at 3.7 and 8 µm: a sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO, J. Geophys. Res. Planets, 1997, vol. 102, no. E3, pp. 6525–6534.ADSCrossRefGoogle Scholar
  26. Krasnopolsky, V.A., et al., Detection of methane in the Martian planets. 102, 6525 6534. atmosphere: evidence for life, Icarus, 2004, vol. 172, pp. 537–547.ADSCrossRefGoogle Scholar
  27. Krasnopolsky, V., Search for methane and upper limits to ethane and SO2 on Mars, Icarus, 2012, vol. 217, pp. 144–152.ADSCrossRefGoogle Scholar
  28. Madeleine, J.B., et al., Revisiting the radiative impact of dust on Mars using the LMD global climate model, J. Geophys. Res., 2011, vol. 116, p. E11010. doi:10.1029/2011JE003855.ADSCrossRefGoogle Scholar
  29. Mahaffy, P.R., et al., Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover, Science, 2013, vol. 341, pp. 263–266.ADSCrossRefGoogle Scholar
  30. Maltagliati, L., et al., Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations, Icarus, 2013, vol. 223, pp. 942–962.ADSCrossRefGoogle Scholar
  31. Montmessin, F., et al., Modeling the annual cycle of HDO in the Martian atmosphere, J. Geophys. Res.-Planets, 2005, vol. 110, p. E03006.ADSCrossRefGoogle Scholar
  32. Mumma, M.J., et al., Strong release of methane on Mars in northern summer 2003, Science, 2009, vol. 323, pp. 1041–1045.ADSCrossRefGoogle Scholar
  33. Owen, T., et al., Deuterium on Mars–the abundance of HDO and the value of D/H, Science, 1988, vol. 240, pp. 1767–1770.ADSCrossRefGoogle Scholar
  34. Polishchuk, G.M., et al., Phobos Grunt space units for promising interplanetary stations, Vestn. Federal. Gos. Unitarn. Predpr. Nauch.-Proizv. Ob”ed. im. S.A. Lavochkina, 2009, no. 2, pp. 3–8.Google Scholar
  35. Schofield, J.T., et al., The ExoMars Climate Sounder (EMCS) investigation, in Mars Atmosphere: Modelling and Observation, 2011, pp. 488–492.Google Scholar
  36. Smith, M.D., Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 2004, vol. 167, pp. 148–165.ADSCrossRefGoogle Scholar
  37. Vandaele, A.C., et al., NOMAD, a spectrometer suite for nadir and solar occultation observations on the ExoMars Trace Gas Orbiter, in Mars Atmosphere: Modelling and Observation, 2011, pp.484–487.Google Scholar
  38. Wennberg, P.O., et al., MATMOS: the Mars atmospheric Trace Molecule Occultation Spectrometer, in Mars Atmosphere: Modelling and Observation, 2011, pp. 480–481.Google Scholar
  39. Zahnle, K., et al., Is there methane on Mars?, Icarus, 2011, vol. 212, pp. 493–503.ADSCrossRefGoogle Scholar
  40. Zelenyi, L.M. and Zakharov, A.V., Phobos Grunt project: devices for scientific researches, Vestn. Federal. Gos. Unitarn. Predpr. Nauch.-Proizv. Ob”ed. im. S.A. Lavochkina, 2011, no. 3, pp. 31–35.Google Scholar
  41. Zurek, R.W., et al., Assessment of a 2016 mission concept: the search for trace gases in the atmosphere of Mars, Planet. Space Sci., 2011, vol. 59, pp. 284–291.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • O. I. Korablev
    • 1
    • 2
  • F. Montmessin
    • 3
  • A. A. Fedorova
    • 1
    • 2
  • N. I. Ignatiev
    • 1
    • 2
  • A. V. Shakun
    • 1
  • A. V. Trokhimovskiy
    • 1
    • 2
  • A. V. Grigoriev
    • 1
  • K. A. Anufreichik
    • 1
  • T. O. Kozlova
    • 1
  1. 1.Space Research Institute (IKI RAN)MoscowRussia
  2. 2.Moscow Physical–Technical Institute (University)Moscow, DolgoprudnyRussia
  3. 3.Laboratoire Atmospheres, MilieuxObservations Spatiales LATMOSGuyancourtFrance

Personalised recommendations