Solar System Research

, Volume 49, Issue 6, pp 367–382 | Cite as

Crater Boguslawsky on the moon: Geological structure and an estimate of the degree of rockiness of the floor

  • M. A. Ivanov
  • A. T. Basilevsky
  • A. M. Abdrakhimov
  • I. P. Karachevtseva
  • A. A. Kokhanov
  • J. W. Head
Article

Abstract

The paper considers the results of a study of the geological structure of the floor of the crater Boguslawsky selected as a primary target for the Luna-Glob mission. The deplanate floor of the crater is covered by the material ejected from remote craters and the crater Boguslawsky-D on the eastern inner slope of the crater Boguslawsky. It is highly probable that the sampling of the crater Boguslawsky-D ejecta will provide the unique possibility to detect and analyze the material that predates the formation of the largest and most ancient currently known basin on the Moon—the South Pole–Aitken basin. The rockiness degree of the Boguslawsky crater floor has been estimated from the radar data and the manual boulder counts in the superresolution images (0.5 m/pixel obtained with the Narrow Angle Camera from the Lunar Reconnaissance Orbiter). Comparison of the radar data to the results of the photo-geological analysis shows that the main contributor to the radar signal is the rock debris located in the subsurface layer sounded by radar (1–1.5 m), while there are practically no boulders on the surface. The two most rocky regions on the crater Boguslawsky floor are associated with the relatively fresh impact craters 300–400 m in diameter. The spatial density of boulders near the craters suggests that one of them is 30–50 Myr older than the other. For both of these craters, the spatial density of boulders drops with the distance from their rims. The rate of the decrease in the boulder spatial density is the same for both craters, which points to the constant-in-time intensity of the fragmentation of boulders. The size distribution of boulders versus the distance from a rim of the older crater is approximated by the curve with a slope of–0.02, while the curve slope for the younger crater is–0.05. The gentler curve slope for the older crater is obviously connected with the equalization of sizes of the rock debris with time. The size-frequency distribution of all rock fragments for the both craters, regardless of the distance from the rim, shows that mainly large boulders first crumble away as the surface age increases. Some large boulders near the young crater demonstrate the traces of rolling, while such traces are absent for the boulders near the older crater. This allows us to estimate the intensity of the reworking of a thin surface layer at 0.01 m/Myr.

Keywords

Moon Luna-Glob mission crater Boguslawsky size-frequency distribution of boulders 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazilevskii, A.T., The way to estimate power and degree of lunar regolith processing according to craters’ abundance, Kosm. Issl., 1974, vol. 12, no. 4, pp. 606–609.ADSGoogle Scholar
  2. Basilevsky, A.T., On the evolution rate of small lunar craters, Proc. 7th Lunar and Planetary Sci. Conf., Houston, 1976, pp. 1005–1020.Google Scholar
  3. Basilevsky, A.T., Head, J.W., and Hörz, F., Survival times of meter-sized boulders on the surface of the Moon, Planet. Space Sci., 2013, vol. 89, pp. 18–126.CrossRefGoogle Scholar
  4. Black, G. and Campbell, D.A., Rhea’s surface: ice properties measured by radar, Bull. Am. Astron. Soc., 2004, vol. 36, p. 1123.ADSGoogle Scholar
  5. Boynton, W.V., Droege, G.F., Mitrofanov, I.G., McClana-han, T.P., Sanin, A.B., Litvak, M.L., Schaffner, M., Chin, G., Evans, L.G., Garvin, J.B., Harshman, K., Malakhov, A., Milikh, G., Sagdeev, R., and Starr, R, High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility, J. Geophys. Res., 2012, vol. 117, no. 3, p. E00H3. Doi: 10.1029/2011JE003979Google Scholar
  6. Campbell, D.A., Chandler, J.F., Ostro, S.J., Pettengill, G.H., and Shapiro, I.I., Galilean satellites: 1976 radar results, Icarus, 1978, vol. 34, pp. 254–267.ADSCrossRefGoogle Scholar
  7. Fassett, C.I. and Thomson, B.J., Crater degradation on the lunar maria: topographic diffusion and the rate of erosion on the Moon, J. Geophys. Res., 2014, vol. 119, pp. 2255–2271. doi:10.1002/2014JE004698CrossRefGoogle Scholar
  8. Feldman, W.C., Lawrence, D.J., Elphic, R.C., Barra-clough, B.L., Maurice, S., Genetay, I., and Binder, A.B., Polar hydrogen deposits on the Moon, J. Geophys. Res., 2000, vol. 105, pp. 4175–4195.ADSCrossRefGoogle Scholar
  9. Feldman, W.C., Maurice, S., Lawrence, D.J., Little, R.C., Lawason, S.L., Gasnault, O., Wiens, R.C., Barra-clough, B.L., Elphic, R.C., Prettyman, T.H, Stein-berg, J.T., and Binder, A.B., Evidence for water ice near the lunar poles, J. Geophys. Res., 2001, vol. 106, pp. 23231–23252.ADSCrossRefGoogle Scholar
  10. Garrick-Bethell, I. and Zuber, M.T., Elliptical structure of the lunar South Pole-Aitken basin, Icarus, 2009, vol. 204, pp. 399–408.ADSCrossRefGoogle Scholar
  11. Harmon, J.K., Arvidson, R.E., Guinness, E.A., Camp-bell, B.A., and Slade, M.A, Mars mapping with delayDoppler radar, J. Geophys. Res., 1999, vol. 104, pp. 14065–14089.ADSCrossRefGoogle Scholar
  12. Hiesinger, H. and Head, J.W., Lunar South Pole-Aitken impact basin: topography and mineralogy, Lunar Planet. Sci, 2004, vol. 34, abstr. no. 1164.Google Scholar
  13. Hiesinger, H., van der Bogert, C.H., Pasckert, J.H., Schmedemann, N., Robinson, M.S., Jolliff, B., and Petro, N., New crater size-frequency distribution measurements of the South Pole-Aitken basin, Lunar Planet. Sci, 2012, vol. 43, abstr. no. 2863.Google Scholar
  14. Hiesinger, H., Ivanov, M., Pasckert, J.H., Bauch, K., and van der Bogert, C.H., Geology of the Lunar Glob landing sites in Boguslawsky crater, Moon, Lunar Planet. Sci., 2014, vol. 45, abstr. no. 2370.Google Scholar
  15. Hörz, F., Cintala, M.J., See, T.H., Cardenas, F., and Thompson, T.D., Collisional fragmentation of granodiorite targets by multiple impact events, Lunar Planet. Sci, 1985, vol. 26, pp. 364–365.Google Scholar
  16. Ivanov, M.A., Abdrakhimov, A.M., Basilevsky, A.T., Dixon, J.L., Head, J.W., Chick, L., Vitten, J., Zuber, M.T., Simt, D.E., Mazarico, E., Neish, C.D., and Bassey, D.B.J., Geological context of potential landing site of the Luna-Glob mission, Solar Syst. Res., 2014, vol. 48, no. 6, pp. 391–402.ADSCrossRefGoogle Scholar
  17. Ivanov, M.A., Hiesinger, H., Abdrahimov, A.M., Basi-levsky, A.T., Head, J.W., Pasckert, J.H., Bauch, K., van der Bogert, C.H., Gläser, P., and Kohanov, A., Landing site selection for Luna-Glob mission in crater Boguslawsky, Planet. Space Sci., 2015 (in press).Google Scholar
  18. Kneissl, T., van Gasselt, S., and Neukum, G, Map-projection-independent crater size-frequency determination in GIS environments–new software tool for ArcGIS, Planet. Space Sci., 2011, vol. 59, pp. 1243–1254.ADSCrossRefGoogle Scholar
  19. Mitrofanov, I., Litvak, M., Sanin, A., Malakhov, A., Golovin, D., Boynton, W., Droege, G., Chin, G., Evans, L., Harshman, K., Fedosov, F., Garvin, J., Kozyrev, A., McClanahan, T., Milikh, G, Mok-rousov, M., Starr, R., Sagdeev, R., Shevchenko, V., Shvetsov, V., Tret’yakov, V., Trombka, J., Varenikov, A., and Vostrukhin, A., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. 27, p. E00H27. Doi: 10.1029/2011JE003956.ADSGoogle Scholar
  20. Neish, C.D., Bussey, D.B.J., Spudis, P., Thomson, B., Patterson, G.W., and Carter, L., Mini-RF observations in support of LCROSS, Lunar Planet. Sci, 2010, vol. 41, abstr. no. 2075.Google Scholar
  21. Neukum, G., Ivanov, B.A., and Hartmann, W.K., Cratering records in the inner Solar System in relation to the lunar reference system, Space Sci. Rev., 2001, vol. 96, pp. 55–86.ADSCrossRefGoogle Scholar
  22. Nozette, S., Spudis, P., Bussey, B., Jensen, R., Raney, K., Winters, H., Lichtenberg, C.L., Marinelli, W., Cru-san, J., Gates, M., and Robinson, M, The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration, Space Sci. Rev., 2010, vol. 150, pp. 285–302.ADSCrossRefGoogle Scholar
  23. Oberbeck, V.R., The role of ballistic erosion and sedimentation in lunar stratigraphy, Rev. Geophys. Space Phys., 1975, vol. 13, pp. 337–363.ADSCrossRefGoogle Scholar
  24. Paige, D.A., Foote, M.C., Greenhagen, B.T., Schofield, J.T., Calcutt, S., Vasavada, A.R., Preston, D.J., Taylor, F.W., Allen, C.C., Snook, K.J., Jakosky, B.M., Murray, B.C., Soderblom, L.A., Jau, B., Loring, S., Bulharowski, J., Bowles, N.E., Thomas, I.R., Sullivan, M.T., Avis, C., De Jong, E.M., Hartford, W., and McCleese, D.J, The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer experiment, Space Sci. Rev., 2010, vol. 150, pp. 125–160.ADSCrossRefGoogle Scholar
  25. Pike, R., Apparent depth/apparent diameter relation for lunar craters, Proc. 8th Lunar Sci. Conf., 1977, pp. 3427–3436.Google Scholar
  26. Shevchenko, V.V., Chikmachev, V.I., and Pugacheva, S.G., Structure of the South Pole-Aitken lunar basin, Solar Syst. Res., 2007, vol. 41, no. 6, pp. 447–462.ADSCrossRefGoogle Scholar
  27. Spudis, P.D., Reisse, R.A., and Gillis, J.J., Ancient multiring basins on the Moon revealed by clementine laser altimetry, Science, 1994, vol. 266, pp. 1848–1851.ADSCrossRefGoogle Scholar
  28. Spudis, P., Nozette, S., Bussey, B., Raney, K., Winters, H., Lichtenberg, C.L., Marinelli, W., Crusan, J.C., and Gates, M.M., Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon, Curr. Sci., 2009, vol. 96, pp. 533–539.Google Scholar
  29. Spudis, P.D., Bussey, D.B.J., Baloga, S.M., Butler, B.J., Carl, D., Carter, L.M., Chakraborty, M., Elphic, R.C., Gillis, A., Davis, J.J., Goswami, J.N., Heggy, E., Hillyard, M., Jensen, R., Kirk, R.L., Lavallee, D., McKer-racher, P., Neish, C.D., Nozette, S., Nylund, S, Palse-tia, M., Patterson, W., Robinson, M.S., Raney, R.K., Schulze, R.C., Sequeira, H., Skura, J., Thompson, T.W., Thomson, B.J., Ustinov, E.A., and Winters, H.L., Initial results for the north pole of the Moon from MiniSAR Chandrayaan-1 mission, Geophys. Rev. Lett., 2010, vol. 37, p. L06204. Doi: 10.1029/2009GL042259ADSCrossRefGoogle Scholar
  30. Stöffler, D., Ryder, G., Ivanov, B.A., Artemieva, N.A., Cintala, M.J., and Grieve, R.A.F., Cratering history and lunar chronology, Rev. Mineral. Geochem., 2006, vol. 60, pp. 519–596.CrossRefGoogle Scholar
  31. Stuart-Alexander, D.E., Geological map of the central far side of the Moon, USGS Map. I-1047, 1978.Google Scholar
  32. Wilhelms, D.E., Howard, K.A., and Wilshire, H.G., Geologic map of the south side of the moon, USGS Map I1192, 1979.Google Scholar
  33. Wilhelms, D.E, The geologic history of the Moon, USGS Spec. Pap, 1987, no. 1348.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • M. A. Ivanov
    • 1
    • 2
    • 3
  • A. T. Basilevsky
    • 1
    • 2
    • 3
  • A. M. Abdrakhimov
    • 1
  • I. P. Karachevtseva
    • 2
  • A. A. Kokhanov
    • 2
  • J. W. Head
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI)Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State University of Geodesy and Cartography (MIIGAiK)MoscowRussia
  3. 3.Brown UniversityProvidenceUSA

Personalised recommendations