Solar System Research

, Volume 49, Issue 5, pp 295–302 | Cite as

Small impact craters in the polar regions of the Moon: Peculiarities of morphometric characteristics

  • A. A. Kokhanov
  • M. A. Kreslavsky
  • I. P. Karachevtseva
Article

Abstract

The paper describes a computer-aided algorithm for determining the morphometric parameters of simple (bowl-shaped) impact craters by digital terrain models (DTMs). The original algorithm was tested on the mass morphometric measurements of small impact craters (from 100 m to 1 km in diameter) on several highlands of the Moon including the polar regions. Analysis of the results showed that the craters in the polar regions differ from those on the other highlands; in particular, fresh craters are systematically less deep. Moreover, near the poles, a typical shape of the inner part of the craters is somewhat closer to a bowl, while it is more conical on the typical highlands. These peculiarities may be connected with low temperatures and the presence of volatiles in the near-surface layer in the polar regions of the Moon.

Keywords

Moon near-pole regions small impact craters computer-aided morphometric measurements DTM GIS Luna-Glob 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, M.E., Byrne, S., Galla, K., McEwen, A.S., Bray, V.J., Dundas, C.M., Fishbaugh, K.E., Herkenhoff, K.E., and Murray, B.C., Crater population and resurfacing of the Martian north polar layered deposits, J. Geophys. Res., 2010, vol. 115, no. E8.Google Scholar
  2. Basilevsky, A.T., Kreslavsky, M.A., Karachevtseva, I.P., and Gusakova, E.N., Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas, Planet. Space Sci., 2014, vol. 92, pp. 77–87. http://dx.doi.org/10.1016/j.pss.2013.12.016CrossRefADSGoogle Scholar
  3. ESRI. ArcGIS for Desktop. http://www.esri.com/soft-ware/arcgis/arcgis-for-desktop. Assessed 19.03.2015.Google Scholar
  4. Kneissl, T., van Gasselt, S., and Neukum, G., Map-projection-independent crater size-frequency determination in GIS environments–new software tool for ArcGIS, Planet. Space Sci., 2011, vol. 59, nos. 11–12, pp. 1243–1254.CrossRefADSGoogle Scholar
  5. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., Chin, G., Garvin, J.B., Golovin, D., Evans, L.G., Harshman, K., Kozyrev, A.S., Litvak, M.L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Neumann, G.A., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Smith, D.E., Starr, R., Tretyakov, V.I., Trombka, J., Usikov, D., Varenikov, A., Vostrukhin, A., and Zuber, M.T., Hydro-gen mapping of the lunar south pole using the LRO neutron detector experiment LEND, Science, 2010, vol. 330, no. 6003, pp. 483–486.CrossRefADSGoogle Scholar
  6. PDS Geosciences Node Washington University in St. Louis. http://pds-geosciences.wustl.edu/. Assessed 03.03.2015.Google Scholar
  7. PDS RDR Archive. LROC.SESE.ASU.EDU: Lunar Reconnaissance Orbiter Camera. http:// wms.lroc.asu.edu/lroc/rdr_product_select. Assessed 03.03.2015.Google Scholar
  8. Robinson, M.S. and 22 colleagues, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 2010, vol. 150, pp. 81–124.CrossRefADSGoogle Scholar
  9. Smith, D.E. and 19 colleagues, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Rev. Lett., 2010a, vol. 37, p. 18204.ADSGoogle Scholar
  10. Smith, D.E. and 30 colleagues, The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission, Space Sci. Rev., 2010b, vol. 150, pp. 209–241.CrossRefADSGoogle Scholar
  11. Tran, T., Rosiek, M.R., Beyer, R.A., Mattson, S., Howing-ton-Kraus, E., Robinson, M.S., Archinal, B.A., Edmundson, K., Harbour, D., and Anderson, E., and the LROC Sci. Team, Generating digital terrain models using LROC NAC images, Proc. 38th Int. Soc. For Pho-togrammetry and Remote Sensing ASPRS/CaGI, 2010.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. A. Kokhanov
    • 1
  • M. A. Kreslavsky
    • 1
    • 2
  • I. P. Karachevtseva
    • 1
  1. 1.Moscow State University of Geodesy and Cartography (MIIGAiK)MoscowRussia
  2. 2.University of California–Santa CruzSanta CruzUSA

Personalised recommendations