Solar System Research

, Volume 49, Issue 2, pp 92–109 | Cite as

Cartographic and geodetic methods to characterize the potential landing sites for the future Russian missions Luna-Glob and Luna-Resurs

  • I. P. Karachevtseva
  • A. A. Kokhanov
  • A. A. Konopikhin
  • I. E. Nadezhdina
  • A. E. Zubarev
  • V. D. Patratiy
  • N. A. Kozlova
  • D. V. Uchaev
  • Dm. V. Uchaev
  • V. A. Malinnikov
  • J. Oberst
Article

Abstract

Characterization of the potential landing sites for the planned Luna-Glob and Luna-Resurs Russian missions requires cartographic and geodetic support prepared with special methods and techniques that are briefly overviewed here. The data used in the analysis, including the digital terrain models (DTMs) and the orthoimages acquired in the survey carried out from the Lunar Reconnaissance Orbiter and Kaguya spacecraft, are described and evaluated. By way of illustration, different regions of the lunar surface, including the subpolar regions of the Moon, are characterized with the suggested methods and the GIS-technologies. The development of the information support for the future lunar missions started in 2011, and it is now carried on in MIIGAiK Extraterrestrial Laboratory (MExLab), which is a department of the Moscow State University of Geodesy and Cartography (MIIGAiK).

Keywords

Luna-Glob Luna-Resurs remote sensing of the Moon image data processing planetary cartography GIS DTM automated crater detection 3D-modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdrakhimov, A.M., Ivanov, M.A., Basilevsky, A.T., Dickson, J.L., Head, J.W., Zuber, M.T., Smith, D.E., Mazarico, E., Neish, C.D., and Bussey, D.B.J., The Luna-Glob candidate landing region: geological mapping based on the lunar reconnaissance orbiter data, Proc. 43rd Lunar and Planetary Science Conference LPSC2012, Woodlands, March 19–23, 2012.Google Scholar
  2. Basilevsky, A.T., Kreslavsky, M.A., Karachevtseva, I.P., and Gusakova, E.N., Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas, Planet. Space Sci., 2014, vol. 92, pp. 77–87.CrossRefADSGoogle Scholar
  3. Ding, W., Stepinski, T.F., Mu, Y., Bandeira, L., Ricardo, R., Wu, Y., Lu, Z., Cao, T., and Wu, X., Subkilometer crater discovery with boosting and transfer learning, ACM Trans. Intell. Syst. Technol., 2011, vol. 2, no. 4, p. 39:1–39:22.CrossRefGoogle Scholar
  4. Florenskii, K.P., Sovremennye predstavleniya o Lune (Modern Conception for the Moon), Moscow: Nauka, 1972.Google Scholar
  5. Grechishchev, A., Zubarev, A., Nadezhdina, I., Patratii, V., and Shishkina, L., PHOTOMOD is a software complex for processing images of celestial bodies, 12-ya Mezhdunarodnaya nauchno-tekhnicheskaya konf. “Ot snimka k karte: tsifrovye fotogrammetricheskie tekhnologii”. Tez. dokl. (Proc. 12th Sci.-Tech. Conf. “From Photo to Map: Digital Photogrammetric Techniques), Rakurs, 2012, pp. 12–13.Google Scholar
  6. Grohmann, C.H., Smith, M.J., and Riccomini, C., Multiscale analyses of topographic surface roughness in the Midland Valley, Scotland, IEEE Trans. Geosci. Remote Sensing, 2011, vol. 49, pp. 1200–1213.CrossRefADSGoogle Scholar
  7. Haruyama, J., Matsunaga, T., Ohtake, M., Morota, T., Honda, C., Yokota, Y., Torii, M., Ogawa, Y., and LISM Working Group, Global lunarsurface mapping experiment using the Lunar Imager/Spectrometer on SELENE, Earth Planets Space, 2014, vol. 60, pp. 243–256.CrossRefADSGoogle Scholar
  8. Karachevtseva, I.P., Konopikhin, A.A., Shingareva, K.B., Cherepanova, E.V., Gusakova, E.N., and Baskakova, M.A., Atlas for Lunokhod-1: geoinformation mapping and analysis of automated interplanetary station Luna-17 landing area according to Lunar Reconnaissance Orbiter distant probing, Sovr. Probl. Distants. Zondir. Zemli Kosmosa, 2012, vol. 9, no. 2, pp. 292–303.Google Scholar
  9. Karachevtseva, I., Oberst, J., Konopikhin, A., Scholten, F., Shingareva, K., Cherepanova, E., Gusakova, E., Haase, I., Peters, O., Plescia, J., and Robinson, M., Cartography of the Lunokhod-1 landing site and traverse from LRO image and stereo topographic data, Planet. Space Sci., 2013, vol. 85, pp. 175–187. http://dx.doi.org/10.1016/j.pss.2013.06.002.CrossRefADSGoogle Scholar
  10. Kim, J.R., Muller, J.P., van Gasselt, S., Morley, J.G., Neukum, G., and the HRSC Team, Automated crater detection, a new tool for mars cartography and chronology, Photogramm. Eng. Remote Sensing, 2005, vol. 71, no. 10, pp. 1205–1217.CrossRefGoogle Scholar
  11. Kneissl, T., van Gasselt, S., and Neukum, G., Map-projection-independent crater size-frequency determination in GIS environments — new software tool for ArcGIS, Planet. Space Sci., 2011, no. 59, pp. 1243–1254.Google Scholar
  12. Kokhanov, A., Karachevtseva, I., Zubarev, A., Nadezhdina, I., Patratiy, V., Kozlova, N., Matveev, E., Garov, A., and Oberst, J., Methods and instruments for the complex spatial analysis of the potential landing sites on the lunar subpolar area, Proc. 5th Moscow Solar System Symp. (5M-S3), Moscow, 2014, abst. 5MS3-MN-18.Google Scholar
  13. Kreslavsky, M.A. and Head, J.W., Kilometer-scale roughness on mars: results from MOLA data analysis, J. Geophys. Res., 2000, vol. 105, no. E11, pp. 26695–26711.CrossRefADSGoogle Scholar
  14. Mitrofanov, I., Litvak, M., Sanin, A., Malakhov, A., Golovin, D., Boynton, W., Droege, G., Chin, G., Evans, L., Harshman, K., Fedosov, F., Garvin, J., Kozyrev, A., McClanahan, T., Milikh, G., Mokrousov, M., Starr, R., Sagdeev, R., Shevchenko, V., Shvetsov, V., Tret’yakov, V., Trombka, J., Varenikov, A., and Vostrukhin, A., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. 27, p. E00H27.ADSGoogle Scholar
  15. Raney, R.K., Spudis, P.D., Bussey, B., Crusan, J., Jensen, R., Marinelli, W., McKerracher, P., Neish, C., Palsetia, M.R., Schulze, R., Sequeira, H.B., and Winters, H., The lunar mini-RF radars: hybrid polarimetric architecture and initial results, Proc. IEEE Inst. Electron. Eng., 2011, vol. 99, no. 1, pp. 808–823.CrossRefGoogle Scholar
  16. Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas, P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger, M.A., Ghaemi, F.T., Schaffner, J.A., Malin, M.C., Mahanti, P., Bartels, A., Anderson, J., Tran, T.N., Eliason, E.M., McEwen, A.S., Turtle, E., Jolliff, B.L., and Hiesinger, H., Lunar Reconnaissance Orbiter Camera (LROC) instrument overview, Space Sci. Rev., 2010, vol. 150, pp. 81–124.CrossRefADSGoogle Scholar
  17. Salamunićcar, G., Lonćarić, S., Pina, P., Bandeira, L., and Saraiva, J., MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets, Planet. Space Sci., 2011, vol. 59, no. 1, pp. 111–131.CrossRefADSGoogle Scholar
  18. Savinykh, V.P., Zubarev, A.E., and Nadezhdina, I.E., Cosmic trends for digital photogrammetric station PHOTOMOD, 11-ya Mezhdunarodnaya nauchnotekhnicheskaya konf. “Ot snimka k karte: tsifrovye fotogrammetricheskie tekhnologii”. Tez. dokl. (Proc. 11th Sci.-Tech. Conf. “From Photo to Map: Digital Photogrammetric Techniques”), Rakurs, 2011, pp. 37–38.Google Scholar
  19. Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Speyerer, E.J., and Robinson, M.S., GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data, J. Geophys. Res., 2012, vol. 117, no. 17, p. E00H17.ADSGoogle Scholar
  20. Smith, D.E., Zuber, M., Jackson, G., Riris, H., Neumann, G.A., Sun, X., McGarry, J.F., Cavanaugh, J.F., Ramos-Izquierdo, L.A., Zellar, R., Torrence, M.H., Mazarico, E., Connelly, J., Matuszeski, A., Ott, M., Rowlands, D.D., Zagwodzki, T., Torrence, M.H., Katz, R., Kleyner, I., Peters, C., Liiva, P., Coltharp, C., Schmidt, S., Ramsey, L., Scott, V.S., Unger, G., Krebs, D.C., Novo-Gradac, A-M.D., Shaw, G.B., and Yu, A.W., The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission, Space Sci. Rev., 2010, vol. 150, pp. 209–241.CrossRefADSGoogle Scholar
  21. Tran, T., Rosiek, M.R., Beyer, R.A., Rosiek, M.R., Beyer, R.A., Mattson, S., Howington-Kraus, E., Robinson, M.S., Archinal, B.A., Edmundson, K., Harbour, D., Anderson, E., and the LROC Sci. Team, Generating digital terrain models using LROC NAC images, ASPRS/CaGIS, 2010.Google Scholar
  22. Tuchin, A.G., Ballistic-navigation flight design to the Moon, planets and small Solar System bodies, Doctoral Sci. (Phys-Math.) Dissertation, Moscow, 2011.Google Scholar
  23. Uchaev, D.V., Uchaev, Dm.V., and Malinnikov, V.A., A texture-based algorithm for automated crater detection, Proc. European Planetary Sci. Congress, Madrid, 2012a, vol. 7, p. 717–3.ADSGoogle Scholar
  24. Uchaev, D.V., Uchaev, Dm.V., Malinnikov, V.A., and Oberst, Yu., The way to detect automatically craters on celestial bodies surface according to their images, Geodez. Kartograf., 2012b, no. 6, pp. 3–8.Google Scholar
  25. Zeleny, L., Lunar Program of Russia for 2011–2020 and 2020–2025 potential cooperation, Proc. 3rd Moscow Int. Solar System Symp. (3M-S3), Moscow, 2012.Google Scholar
  26. Zubarev, A., Nadezhdina, I., Kozlova, N., Karachevtseva, I., Oberst, J., and Robinson, M., High-resolution terrain models from LRO stereo images for Luna-Glob landing site selection, Proc. 3rd Moscow Int. Solar System Symp. (3M-S3), Moscow, 2012a, pp. 173–174.Google Scholar
  27. Zubarev, A., Nadezhdina, I., Kozlova, N., Karachevtseva, I., Gusakova, E., and Oberst, J., Lunokhod-1 panoramic images and stereo topography, Proc. European Planetary Sci. Congress, Madrid, 2012b, vol. 7, p. 477.ADSGoogle Scholar
  28. Zuber, M.T., Smith, D.E., Zellar, R.S., Neumann, G.A., Sun, X., Katz, R.B., Kleyner, I., Matuszeski, A., McGarry, J.F., Ott, M.N., Ramos-Izquierdo, L.A., Rowlands, D.D., Torrence, M.H., and Zagwodzki, T.W., The lunar reconnaissance orbiter laser ranging investigation, Space Sci. Rev., 2010, vol. 150, pp. 63–80.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • I. P. Karachevtseva
    • 1
  • A. A. Kokhanov
    • 1
  • A. A. Konopikhin
    • 1
  • I. E. Nadezhdina
    • 1
  • A. E. Zubarev
    • 1
  • V. D. Patratiy
    • 1
  • N. A. Kozlova
    • 1
  • D. V. Uchaev
    • 1
  • Dm. V. Uchaev
    • 1
  • V. A. Malinnikov
    • 1
  • J. Oberst
    • 1
    • 2
    • 3
  1. 1.Moscow State University of Geodesy and Cartography (MIIGAiK)MoscowRussia
  2. 2.Institute of Planetary ResearchGerman Aerospace Center (DLR)BerlinGermany
  3. 3.Department for Geodesy and Geoinformation ScienceTechnical University of Berlin (TUB)BerlinGermany

Personalised recommendations