Solar System Research

, Volume 48, Issue 6, pp 391–402 | Cite as

Geological context of potential landing site of the Luna-Glob mission

  • M. A. Ivanov
  • A. M. Abdrakhimov
  • A. T. Basilevsky
  • J. L. Dixon
  • J. W. Head
  • L. Chick
  • J. Vitten
  • M. T. Zuber
  • D. E. Simt
  • E. Mazarico
  • C. D. Neish
  • D. B. J. Bassey
Article

Abstract

The region planned for performing the Luna-Glob mission is located in the southern part of the swell surrounding the largest South Pole-Aitken (SPA) basin. The photogeological analysis of the surface topography of this region using the LRO-WAC (resolution of 100 Mpxl) photomaps made it possible to define the following groups of morphological units (area types): (1) related to the formation of relatively fresh impact craters; (2) associated with larger (>100 km across) degraded craters including (2a) external and (2b) inner facies; and (3) occupying intercrater spaces. The comparison of the geological map with the map illustrating the distribution of the epithermal neutron flow (Mitrofanov et al., 2012) shows no correlation between them. Consequently, one should not expect development of rock complexes, which would be characterized by elevated concentrations of water in the region chosen for the Luna-Glob mission and, thus, considered among the first-priority targets. The comparison of the neutron flow distribution with the map of circular polarization of the Mini-RF radar beam also shows no correlation. This means that high values of circular polarization reflect elevated concentrations of rock fragments rather than water accumulations. Even though ice fragments are present, their sizes should only slightly be less as compared with the radar wavelength (12.6 cm). The region planned for investigations in the scope of the Luna-Glob mission corresponds to the swell of the largest (and, likely, oldest) preserved basin and offers a potential opportunity to analyze ancient material of this planet and introduce important constraints into the spectrum of models proposed for explaining the Moon’s origin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J.R., Ice in the lunar polar region, J. Geophys. Res., 1979, vol. 84, pp. 5659–5668.ADSCrossRefGoogle Scholar
  2. Basilevsky, A.T., Abdrakhimov, A.M., and Dorofeeva, V.A., Water and other volatiles on the Moon: a review, Solar Syst. Res., 2012, vol. 46, no. 2, pp. 89–107.ADSCrossRefGoogle Scholar
  3. Boynton, W.V., Droege, G.F., Mitrofanov, I.G., McClanahan, T.P., Sanin, A.B., Litvak, M.L., Schaffner, M., Chin, G., Evans, L.G., Garvin, J.B., Harshman, K., Malakhov, A., Milikh, G., Sagdeev, R., and Starr, R., High spatial resolution studies of epithermal neutron emission from the lunar poles: constraints on hydrogen mobility, J. Geophys. Res., 2012, vol. 117, p. E00H33. doi: 10.1029/2011JE003979ADSGoogle Scholar
  4. Bussey, D.B.J., McGovern, J.A., Spudis, P.D., Neis, C.D., Noda, H., Ishihara, Y., and Sorensen, S.-A., Illumination conditions of the South Pole of the Moon derived using Kaguya topography, Icarus, 2010, vol. 208, pp. 558–564.ADSCrossRefGoogle Scholar
  5. Bussey, D.B.J., Spudis, P.D., and the Mini-RF Team, New insights into lunar processes and history from global mapping by Mini-RF radar, Proc. Lunar and Planet. Sci. Conf., Houston, 2011, vol. 42, Abstract no. 2086.Google Scholar
  6. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky, D., Landis, D., and Sollitt, L., Detection of water in the LCROSS ejecta plume, Science, 2010, vol. 330, pp. 463–468.ADSCrossRefGoogle Scholar
  7. Crider, D.H. and Vondrak, R.R., The solar wind as a possible source of lunar polar hydrogen deposits, J. Geophys. Res., 2000, vol. 105, pp. 26773–26782.ADSCrossRefGoogle Scholar
  8. Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., and Lawrence, D.J., Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles, Science, 1998, vol. 281, pp. 1496–1500.ADSCrossRefGoogle Scholar
  9. Feldman, W.C., Lawrence, D.J., Elphic, R.C., Barraclough, B.L., Maurice, S., Genetay, I., and Binder, A.B., Polar hydrogen deposits on the Moon, J. Geophys. Res., 2000, vol. 105, pp. 4175–4195.ADSCrossRefGoogle Scholar
  10. Feldman, W.C., Maurice, S., Lawrence, D.J., Little, R.C., Lawson, S.L., Gasnault, O., Wiens, R.C., Barraclough, B.L., Elphic, R.C., Prettyman, T.H., Steinberg, J.T., and Binder, A.B., Evidence for water ice near the lunar poles, J. Geophys. Res., 2001, vol. 106, pp. 23231–23252.ADSCrossRefGoogle Scholar
  11. Garrick-Bethell, I. and Zuber, M.T., Elliptical structure of the lunar South Pole-Aitken basin, Icarus, 2009, vol. 204, pp. 399–408.ADSCrossRefGoogle Scholar
  12. Hiesinger, H. and Head, J.W., Lunar South Pole-Aitken impact basin: topography and mineralogy, Proc. Lunar and Planet. Sci. Conf., Houston, 2004, vol. 34, Abstract no. 1164.Google Scholar
  13. Hiesinger, H., van der Bogert, C.H., Pasckert, J.H., Schmedemann, N., Robinson, M.S., Jolliff, B., and Petro, N., New crater size-frequency distribution measurements of the South Pole-Aitken basin, Proc. Lunar and Planet. Sci. Conf., Houston, 2012, vol. 43, Abstract no. 2863.Google Scholar
  14. Klima, R.L., Lawrence, D.J., Cahill, T.S., and Hagerty, J., Bullialdus crater: correlation between KREEP and local mineralogy, Proc. Lunar and Planet. Sci. Conf., 2012, vol. 43, Abstract no. 2517.Google Scholar
  15. Leikin, G.A. and Sanovich, A.N., Southern basin formation at the opposite part of the Moon, Astron. Vestn., 1985, vol. 19, no. 2, pp. 113–119.ADSGoogle Scholar
  16. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., Chin, G., Garvin, J.B., Golovin, D., Evans, L.G., Harshman, K., Kozyrev, A.S., Litvak, M.L., Malakhov, A., Mazarico, E., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Neumann, G.A., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Smith, D.E., Starr, R., Tretyakov, V.I., Trombka, J., Usikov, D., Varenikov, A., Vostrukhin, A., and Zuber, M.T., Hydrogen mapping of the lunar South Pole using the LRO neutron detector experiment LEND, Science, 2010, vol. 330, pp. 483–486.ADSCrossRefGoogle Scholar
  17. Mitrofanov, I., Litvak, M., Sanin, A., Malakhov, A., Golovin, D., Boynton, W., Droege, G., Chin, G., Evans, L., Harshman, K., Fedosov, F., Garvin, J., Kozyrev, A., McClanahan, T., Milikh, G., Mokrousov, M., Starr, R., Sagdeev, R., Shevchenko, V., Shvetsov, V., Tret’yakov, V., Trombka, J., Varenikov, A., and Vostrukhin, A., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. 27, p. E00H27. doi: 10.1029/2011JE003956ADSGoogle Scholar
  18. Nozette, S., Spudis, P., Bussey, B., Jensen, R., Raney, K., Winters, H., Lichtenberg, C.L., Marinelli, W., Crusan, J., Gates, M., and Robinson, M., The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) technology demonstration, Space Sci. Rev., 2010, vol. 150, pp. 285–302.ADSCrossRefGoogle Scholar
  19. Oberbeck, V.R., Hörz F., Morrison, R.H., Quaide, W.L., and Gault, D.E., On the origin of the lunar smoothplains, Moon, 1975, vol. 12, pp. 19–54.ADSCrossRefGoogle Scholar
  20. Sanin, A., Mitrofanov, I., Boynton, W., Chin, G., Demidov, N., Garvin, J., Golovin, D., Evans, L., Harshman, K., Kozyrev, A., Litvak, M., Malakhov, A., McClanahan, T., Milikh, G., Mokrousov, M., Nandikotkur, G., Nuzhdin, I., Sagdeev, R., Shevchenko, V., Shvetsov, V., Starr, R., Tretyakov, V., Trombka, J., Usikov, D., Varennikov, A., and Vostrukhin, A., Mapping of lunar hydrogen according to the LEND neutron measurements onboard the NASA LRO, Proc. Lunar and Planet. Sci. Conf., Houston, 2010, vol. 41, Abstract no. 2437.Google Scholar
  21. Sanin, A.B., Mitrofanov, I.G., Litvak, M.L., Malakhov, A., Boynton, W.V., Chin, G., Droege, G., Evans, L.G., Garvin, J., Golovin, D.V., Harshman, K., McClanahan, T.P., Mokrousov, M.I., Mazarico, E., Milikh, G., Neumann, G., Sagdeev, R., Smith, D.E., Starr, R.D., and Zuber, M.T., Testing lunar permanently shadowed regions for water ice: LEND results from LRO, J. Geophys. Res., 2012, vol. 117, no. 26, p. E00H26. doi: 10.1029/2011JE003971ADSGoogle Scholar
  22. Shevchenko, V.V., Chikmachev, V.I., and Pugacheva, S.G., Structure of the South Pole-Aitken lunar basin, Solar Sys. Res., 2007, vol. 41, pp. 447–462.ADSCrossRefGoogle Scholar
  23. Smith, D.E., Zuber, M.T., Jackson, G.B., Cavanaugh, J.F., Neumann, G.A., Riris, H., Sun, X., Zellar, R.S., Coltharp, C., Connelly, J., Katz, R.B., Kleyner, S., Liiva, P., Matuszeski, A., Mazarico, E.M., McGarry, J.F., Novo-Gradac, A.-M., Ott, Me.N., Peters, C., Ramos-Izquierdo, L.A., Ramsey, L., Rowlands, D.D., Schmidt, S., Scott, V.S., Shaw, G.B., Smith, J.C., Swinski, J.-P., Torrence, M.H., Unger, G., Yu, A.W., and Zagwodzki, T.W., Initial observations from the Lunar Orbiter Laser Altimeter (LOLA), Geophys. Rev. Lett., 2010, vol. 37, p. L18204. doi: 10.1029/2010GL043751ADSGoogle Scholar
  24. Spudis, P., Nozette, S., Bussey, B., Raney, K., Winters, H., Lichtenberg, C.L., Marinelli, W., Crusan, J.C., and Gates, M.M., Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon, Curr. Sci., 2009, vol. 96, pp. 533–539.Google Scholar
  25. Spudis, P.D., Bussey, D.B.J., Baloga, S.M., Butler, B.J., Carl, D., Carter, L.M., Chakraborty, M., Elphic, R.C., Gillis-Davis, J.J., Goswami, J.N., Heggy, E., Hillyard, M., Jensen, R., Kirk, R.L., LaVallee, D., McKerracher, P., Neish, C.D., Nozette, S., Nylund, S., Palsetia, M., Patterson, W., Robinson, M.S., Raney, R.K., Schulze, R.C., Sequeira, H., Skura, J., Thompson, T.W., Thomson, B.J., Ustinov, E.A., and Winters, H.L., Initial results for the north pole of the Moon from Mini-SAR Chandrayaan-1 mission, Geophys. Rev. Lett., 2010, vol. 37, p. L06204. doi: 10.1029/2009GL042259ADSCrossRefGoogle Scholar
  26. Starukhina, L.V. and Shkuratov, Yu.G., The lunar poles: water ice or chemically trapped hydrogen?, Icarus, 2000, vol. 147, pp. 585–587.ADSCrossRefGoogle Scholar
  27. Stewart-Alexander, D.E., Geological map of the central far side of the Moon, USGS Map I-1047, 1978.Google Scholar
  28. Watson, K., Murray, B.S., and Brown, H., The behavior of volatiles on the lunar surface, J. Geophys. Res., 1961, vol. 66, no. 9, pp. 3033–3045.ADSCrossRefGoogle Scholar
  29. Wilhelms, D.E., Geologic mapping of the second planet. Part 1: Rationale and general methods of lunar geologic mapping, in A Primer in Lunar Geology, Greeley, R. and Schultz, P., Eds., Ames Res. Center NASA, 1974, pp. 199–215.Google Scholar
  30. Wilhelms, D.E., Howard, K.A., and Wilshire, H.G., Geologic map of the south side of the Moon, USGS Map I-1192, 1979.Google Scholar
  31. Wilhelms, D.E., The geologic history of the Moon, USGS Spec. Pap. no. 1348, 1987.Google Scholar
  32. Zelenyi, L.M., Khartov, V.V., Mitrofanov, I.G., and Skalsky, A.A., “Luna-Glob” and “Luna-Resource” missions, Proc. 1st Moscow Solar System Symp., Moscow, 2010. http://ms2010.cosmos.ru/pres/3/zelenyi_luna.ppt Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. A. Ivanov
    • 1
    • 2
    • 3
  • A. M. Abdrakhimov
    • 1
    • 2
  • A. T. Basilevsky
    • 1
    • 2
    • 3
  • J. L. Dixon
    • 2
  • J. W. Head
    • 2
  • L. Chick
    • 2
  • J. Vitten
    • 2
  • M. T. Zuber
    • 4
  • D. E. Simt
    • 5
  • E. Mazarico
    • 5
  • C. D. Neish
    • 6
  • D. B. J. Bassey
    • 7
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Brown UniversityProvidenceUSA
  3. 3.Moscow State University of Geodesy and CartographyMoscowRussia
  4. 4.Massachusetts Institute of TechnologyBostonUSA
  5. 5.Goddard CenterGreenbeltUSA
  6. 6.Florida Institute of TechnologyMelbourneUSA
  7. 7.Laboratory of Applied PhysicsJohn Hopkins UniversityWashingtonUSA

Personalised recommendations