Solar System Research

, Volume 48, Issue 4, pp 279–286 | Cite as

CHOMIK: a multi-method approach for studying Phobos

  • H. Rickman
  • E. Słaby
  • J. Gurgurewicz
  • M. Śmigielski
  • M. Banaszkiewicz
  • J. Grygorczuk
  • M. Morawski
  • K. Seweryn
  • R. Wawrzaszek
Article

Abstract

CHOMIK is the name of a penetrator constructed for sampling and retrieval of Phobos surface material. It formed an integral part of the Phobos Sample Return Mission. In this paper we present its construction and intended mode of operation, since the concept is still viable for future missions either to Phobos or to other small bodies of similar dimensions. We take Phobos as an example to describe the science case for such an instrument and how it might be utilized to resolve important open issues regarding the origin of the Martian moons. Concerning the latter, we place emphasis on measurement techniques and analysis tools for mapping trace element concentrations in returned sample.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bibring, J.-P., Phobos origin: a reappraisal, in Proc. European Planetary Sci. Congress, Rome, 2010, vol. 5, p. 554.ADSGoogle Scholar
  2. Bibring, J.-P., Gondet, B., and Pilorget, C., Phobos composition and origin: from OMEGA to MicrOmega, in Proc. European Planetary Science Congress, Nantes, 2011, vol. 6, pp. 510–511.ADSGoogle Scholar
  3. Bland, P.A., Alard, O., Gounelle, M., and Rogers, N.W., Trace element variation in carbonaceous chondrite matrix, in Proc. 34th Lunar Planet. Sci. Conf., Houston, 2003, Abstract no. 1750.Google Scholar
  4. Campins, H., Hargrove, K., Pinilla-Alonso, N., et al., Water ice and organics on the surface of the asteroid 24 Themis, Nature, 2010, vol. 464, pp. 1320–1321.ADSCrossRefGoogle Scholar
  5. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford Univ. Press, 1959.Google Scholar
  6. Craddock, R.A., Are Phobos and Deimos the result of a giant impact?, Icarus, 2011, vol. 211, pp. 1150–1161.ADSCrossRefGoogle Scholar
  7. Dauphas, N. and Pourmand, A., Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, 2011, vol. 473, pp. 489–492.ADSCrossRefGoogle Scholar
  8. Davidsson, B.J.R., Gutiérrez, P., and Rickman, H., Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR deep impact spectra, Icarus, 2009, vol. 201, pp. 335–357.ADSCrossRefGoogle Scholar
  9. Domonik, A., Słaby, E., and Śmigielski, M., The Hurst exponent as a tool for the description of magma field heterogeneity reflected in the geochemistry of growing crystals, Acta Geol. Polon., 2010, vol. 60, pp. 437–443.Google Scholar
  10. Friedrich, J.M., Wang, M.-S., and Lipschutz, M.E., Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites, Meteorit. Planet. Sci., 2002, vol. 37, pp. 677–686.ADSCrossRefGoogle Scholar
  11. Gendrin, A., Langevin, Y., and Erard, S., ISM observation of Phobos reinvestigated: identification of a mixture of olivine and low-calcium pyroxene, J. Geophys. Res., 2005, vol. 110, p. E04014.ADSGoogle Scholar
  12. Gondet, B., Bibring, J.-P., Langevin, Y., and the OMEGA Sci. Team, Phobos observations by OMEGA/Mars Express hyperspectral imager, in Proc. European Planetary Science Congress, Rome, 2010, vol. 5, p. 548.ADSGoogle Scholar
  13. Groussin, O., A’Hearn, M.F., Li, J.-Y., et al., Surface temperature of the nucleus of Comet 9P/Tempel 1, Icarus, 2007, vol. 187, pp. 16–25.ADSCrossRefGoogle Scholar
  14. Grygorczuk, J., Banaszkiewicz, M., Seweryn, K., and Spohn, T., MUPUS insertion device for Rosetta mission, J. Telecommun. Inf. Tech., 2007, vol. 1, pp. 50–53.Google Scholar
  15. Hsieh, H.H. and Jewitt, D., A population of comets in the main asteroid belt, Science, 2006, vol. 312, pp. 561–563.ADSCrossRefGoogle Scholar
  16. Ivanov, A.V., Is the Kaidun meteorite a sample from Phobos?, Solar Syst. Res., 2004, vol. 38, pp. 97–107.ADSCrossRefGoogle Scholar
  17. Ivanov, A.V., Ivanova, M.A., and Kononkova, N.N., Concentrically zonal textures in a sample of the Kaidun meteorite, Geochem. Int., 2007, vol. 45, pp. 957–970.CrossRefGoogle Scholar
  18. Ivanov, A.V., Kononkova, N.N., and Zolensky, M.E., Pegmatoid objects in a sample of the Kaidun meteorite, Geochem. Int., 2008, vol. 46, pp. 759–774.CrossRefGoogle Scholar
  19. Jewitt, D., The active asteroids, Astron. J., 2012, vol. 143, Article no. 66.Google Scholar
  20. Murchie, S., Mars Pathfinder spectral measurements of Phobos and Deimos: comparison with previous data, J. Geophys. Res., 1999, vol. 104, pp. 9069–9080.ADSCrossRefGoogle Scholar
  21. Murchie, S., Choo, T., Humm, D., et al., MRO/CRISM observations of Phobos and Deimos, in Proc. 34th Lunar Planet. Sci. Conf., Houston, 2008, p. 1434.Google Scholar
  22. Pajola, M., Lazzarin, M., Bertini, I., et al., Spectrophotometry investigation of Phobos with the OSIRIS-NAC camera onboard the Rosetta spacecraft, Mon. Notic. Roy. Astron. Soc., 2012, vol. 427, no. 4, pp. 3230–3243.ADSCrossRefGoogle Scholar
  23. Pollack, J.B., Veverka, J., Pang, K.D., et al., Multicolor observations of PHOBOS with the Viking lander cameras-evidence for a carbonaceous chondritic composition, Science, 1978, vol. 199, pp. 66–69.ADSCrossRefGoogle Scholar
  24. Raymond, S.N., O’Brien, D.P., Morbidelli, A., and Kaib, N.A., Building the terrestrial planets: constrained accretion in the inner Solar System, Icarus, 2009, vol. 203, pp. 644–662.ADSCrossRefGoogle Scholar
  25. Rivkin, A.S. and Emery, J.P., Detection of ice and organics on an asteroidal surface, Nature, 2010, vol. 464, pp. 1322–1323.ADSCrossRefGoogle Scholar
  26. Saby, E., Śmigielski, M., Śmigielski, T., et al., Chaotic three-dimensional distribution of Ba, Rb, and Sr in feldspar megacrysts grown in an open magmatic system, Contribut. Mineral. Petrol., 2011, vol. 162, pp. 909–927.ADSCrossRefGoogle Scholar
  27. Saby, E., Martin, H., Hamada, M., et al., High temperature fluid interaction with Archaean alkali feldspar megacrysts: a multi-method approach, J. Petrol., 2012, vol. 53, pp. 67–98.CrossRefGoogle Scholar
  28. Śmigielski, M., Słaby, E., and Domonik, A., Digital concentration-distribution models-tools for a description of the heterogeneity of the magmatic field as reflected in the geochemistry of a growing crystal, Acta Geol. Polon., 2012, vol. 62, pp. 129–141.Google Scholar
  29. Wolf, S.F., Unger, D.L., and Friedrich, J.M., Determination of cosmochemically volatile trace elements in chondritic meteorites by inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2005, vol. 528, pp. 121–128.CrossRefGoogle Scholar
  30. Zolensky, M. and Ivanov, A., The Kaidun microbreccia meteorite: a harvest from the inner and outer asteroid belt, Chem. Erde, 2003, vol. 63, pp. 185–246.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • H. Rickman
    • 1
    • 2
  • E. Słaby
    • 3
  • J. Gurgurewicz
    • 1
    • 4
  • M. Śmigielski
    • 5
  • M. Banaszkiewicz
    • 1
  • J. Grygorczuk
    • 1
  • M. Morawski
    • 1
  • K. Seweryn
    • 1
  • R. Wawrzaszek
    • 1
  1. 1.Space Research CentrePolish Academy of SciencesWarsawPoland
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Institute of Geological Sciences, Polish Academy of SciencesResearch Centre in WarsawWarsawPoland
  4. 4.Institute of Geological Sciences, Polish Academy of SciencesResearch Centre in WrocławWrocławPoland
  5. 5.Institute of GeologyUniversity of WarsawWarsawPoland

Personalised recommendations