Advertisement

Solar System Research

, Volume 46, Issue 2, pp 89–107 | Cite as

Water and other volatiles on the moon: A review

  • A. T. Basilevsky
  • A. M. Abdrakhimov
  • V. A. Dorofeeva
Article

Abstract

This paper presents a review of research findings on the various forms of water on the Moon. First, this is the water of the Moon’s interior, which has been detected by sensitive mass spectrometric analysis of basaltic glasses delivered by the Apollo 15 and Apollo 17 missions. The previous concepts that lunar magmas are completely dehydrated have been disproved. Second, this is H2O and/or OH in a thin layer (a few upper millimeters) of the lunar regolith, which is likely a result of bombardment of the oxygen contained in the lunar regolith with solar wind protons. This form of water is highly unstable and quite easily escapes from the surface, possibly being one of the sources of the water ice reservoirs at the Moon’s poles. Third, this is water ice associated with other frozen gases in cold traps at the lunar poles. Its possible sources are impacts of comets and meteorites, the release of gas from the Moon’s interior, and solar wind protons. The ice trapped at the lunar polars could be of practical interest for further exploration of the Moon.

Keywords

Solar System Research Lunar Surface Lunar Regolith Lunar Planet Solar Wind Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhmanova, M.V., Dement’ev, B.V., and Markov, M.N., Water in Mare Crisium Regolith (“Luna 24”), Geokhim., 1978, no. 5, pp. 285–288.Google Scholar
  2. Alter, D., The Kozyrev Observations of Alphonsus, Publ. Astron. Soc. Pacific, 1959, vol. 71, no. 418, p. 46.ADSCrossRefGoogle Scholar
  3. Araki, H., Tazawa, S., Noda, H., et al., Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry, Science, 2009, vol. 323, no. 329, pp. 897–900.ADSCrossRefGoogle Scholar
  4. Arnold, J.R., Ice in the Lunar Polar Region, J. Geophys. Res., 1979, vol. 84, pp. 5659–5668.ADSCrossRefGoogle Scholar
  5. Artemieva, N.A. and Shuvalov, V.V., Numerical Simulation of High-Velocity Impact Ejecta Following Falls of Comets and Asteroids onto the Moon, Solar Syst. Res., 2008, vol. 42, no. 4, p. 329.ADSCrossRefGoogle Scholar
  6. Berezhnoi, A.A., Shevchenko, V.V., and Dorofeeva, V.A., Comets-Probable Source of Volatiles on the Moon, Proc. 26th Vernadsky-Brown Microsymp. on Comparatible Planetology, Moscow, Oct. 13–17, 1997.Google Scholar
  7. Berezhnoi, A.A. and Klumov, B.A., Lunar Ice: Can Its Origin Be Determined?, JETP Lett., 1998, vol. 68, no. 2, pp. 163–167.ADSCrossRefGoogle Scholar
  8. Berezhnoy, A.A., Hasebe, N., Hiramoto, T., et al., Possibility of H and S Detection by SELENE Mission, Lunar Planet. Sci., 2003, vol. 34, abs. 1210.Google Scholar
  9. Berezhnoy, A.A., Kozlova, E.A., Shangaraev, A.A., and Shevchenko, V.V., Stability and Origin of Lunar Polar Volatiles, Lunar Planet. Sci., 2011, vol. 42. 2011, abs. 1185.Google Scholar
  10. Boyce, J.W., Liu, Y., Rossman, G.R., et al., Lunar Apatite with Terrestrial Volatile Abundances, Nature, 2010, vol. 466, pp. 466–470.ADSCrossRefGoogle Scholar
  11. Burke, D.J., Dukes, C.A., Kim, J.-H., et al., Solar Wind Contribution to Surficial Lunar Water: Laboratory Investigations, Icarus, 2011, vol. 211, pp. 1082–1088.ADSCrossRefGoogle Scholar
  12. Canup, R.M. and Asphaug, E., Origin of the Moon in a Giant Impact near the End of the Earth’s Formation, Nature, 2001, vol. 412, pp. 708–712.ADSCrossRefGoogle Scholar
  13. Carr, M., The Geology of the Mare Serenitatis Region of the Moon, Proc. USGS Astrogeol. Stud. Annu. Progr., July 1, 1965–July 1, 1966, pt. A, pp. 35–43.Google Scholar
  14. Carruba, V. and Coradini, A., Lunar Cold Traps: Effects of Double Shielding, Icarus, 1999, vol. 142, pp. 402–413.ADSCrossRefGoogle Scholar
  15. Chaussidon, M., Sheppard, S.M.F., and Michard, A., Hydrogen Sulfur and Neodymium Isotope Variations in the Mantle Beneath the EPR, in Stable Isotope Seochemistry: A Tribute to Samuel Epstein, Lancaster Press, 1991, pp. 325–337.Google Scholar
  16. Chyba, C.F., Terrestrial Mantle Siderophiles and the Lunar Impact Record, Icarus, 1991, vol. 92, pp. 217–233.ADSCrossRefGoogle Scholar
  17. Clark, R.N., Detection of Adsorbed Water and Hydroxyl on the Moon, Science, 2009, vol. 326, no. 5952, pp. 562–564.ADSCrossRefGoogle Scholar
  18. Clark, R., Pieters, C.M., Green, R.O., et al., Water and Hydroxyl on the Moon as Seen by the Moon Mineralogy Mapper (M3), Lunar Planet. Sci., 2010, vol. 41, abs. 2302.Google Scholar
  19. Clayton, R.N., Oxygen Isotopes in Meteorites, in Treatise on Geochemistry, vol. 1: Meteorites, Comets and Planets, Davies, A.N., Holland, H.D., and Turekian, K.K., Eds., Elsevier, 2003, pp. 129–143.Google Scholar
  20. Colaprete, A., Ennico, K., Wooden, D., et al., Water and More: An Overview of LCROSS Impact Results, Lunar Planet. Sci., 2010, vol. 41, abs. 2335.Google Scholar
  21. Coombs, C.R., Hawke, B.R., Lucey, P.G., et al., The Alphonsus Region: a Geologic and Remote Sensing Perspective, Proc. 20th Lunar Planet. Sci. Conf., Houston, 1990, pp. 339–353.Google Scholar
  22. CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., Boca Raton: CRC Press, 2007.Google Scholar
  23. Crider, D.H. and Vondrak, R.R., Space Weathering Effects on Lunar Cold Trap Deposits, J. Geopgys. Res., 2003, vol. 108, no. 7, p. 5079.ADSCrossRefGoogle Scholar
  24. Crider, D.H. and Vondrak, R.R., Understanding Stratigrapy in Lunar Polar Cold Traps, Lunar Planet Sci., 2007, vol. 38, abs. 2225.Google Scholar
  25. Deep Sea Drilling Project Initial Reports, National Science Foundation, 1969–1987, vols. 1–96.Google Scholar
  26. Delano, J.W., Pristine Lunar Glasses: Criteria, Data, and Implications, J. Geophys. Res., 1986, vol. 91, no. B4, pp. D201–D213.ADSCrossRefGoogle Scholar
  27. Delano, J.W., Hanson, B.Z., and Watson, W.B., Abundance and Diffusivity of Sulfur in Lunar Picritic Magmas, Lunar Planet. Sci., 1994, vol. 38, pp. 325–326.ADSGoogle Scholar
  28. Elphic, R.C., Lawrence, D.J., Feldman, W.C., et al., Using Models of Permanent Shadow to Constrain Lunar Polar Water Ice Abundances, Lunar Planet. Sci., 2005, vol. 36, abs. 2297.Google Scholar
  29. Epstein, S. and Taylor, H.P., The Concentration and Isotopic Composition of Hydrogen, Carbon, and Silicon in Apollo 11 Lunar Rocks and Minerals, Proc. Apollo 11th Lunar Sci. Conf., 1970, pp. 1085–1096.Google Scholar
  30. Epstein, S. and Taylor, H.P., The Isotopic Composition and Concentration of Water, Hydrogen and Carbon in Some Apollo 15 and 16 Soils and in the Apollo 17 Orange Soil, Geochim. Cosmochim. Acta, 1973, vol. 2, suppl. 4: Proc. 4th Lunar and Planet. Sci. Conf., pp. 1559–1575.Google Scholar
  31. Farrell, W.M., Killen, R.M., Vondrak, R.R., et al., Could Lunar Polar Ice Be a’ Fountain’ Source for the Dayside Water Veneer?, Lunar Planet. Sci., 2011, vol. 42, abs. 1765.Google Scholar
  32. Fegley, B. and Lodders, K., The Planetary Scientist’s Companion, New York: Oxford Univ. Press, 1998.Google Scholar
  33. Feldman, W.C., Maurice, S., Binder, A.B., et al., Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles, Science, 1998, vol. 281, pp. 1496–1500.ADSCrossRefGoogle Scholar
  34. Feldman, W.C., Lawrence, D.J., Elphic, R.C., et al., Polar Hydrogen Deposits on the Moon, J. Geophys. Res. Planets, 2000, vol.105, no. E2, pp. 4175–4195.ADSCrossRefGoogle Scholar
  35. Feldman, W.C., Maurice, S., Lawrence, D.J., et al., Evidence for Water Ice near the Lunar Poles, J. Geophys. Res., 2001, vol. 106, no. E10, pp. 23231–23252.ADSCrossRefGoogle Scholar
  36. Fogel, R.A. and Rutherford, M.J., Magmatic Volatiles in Primitive Lunar Glasses: I. FTIR and EPMA Analyses of Apollo 15 Green and Yellow Glasses and Revision of the Volatile-Assisted Fire-Fountain Theory, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 1, pp. 201–215.ADSCrossRefGoogle Scholar
  37. Friedman, I., Hardcastle, K.G., and Gleason, J.D., Isotopic Composition of Carbon and Hydrogen in Some Apollo 14 and 15 Samples, in The Apollo 15 Lunar Samples, Houston: LPI, 1972, pp. 302–306.Google Scholar
  38. Friedman, B., Saal, A.E., Hauri, E.H., et al., The Volatile Content of the Apollo 15 Picritic Glasses, Lunar Planet. Sci., 2009, vol. 41, abs. 2444.Google Scholar
  39. Gaddis, L.R., Pieters, C.M., and Hawke, B.R., Remote Sensing of Lunar Pyroclastic Mantling Deposits, Icarus, 1985, vol. 61, pp. 461–489.ADSCrossRefGoogle Scholar
  40. Gaddis, L.R., Staid, M.I., Tyburczy, J.A., et al., Compositional Analyses of Lunar Pyroclastic Deposits, Icarus, 2003, vol. 161, pp. 262–280.ADSCrossRefGoogle Scholar
  41. Garvin, J.B., Mitrofanov, I., Smith, D.E., et al., Lunar Polar Hydrogen Correlations with Impact Crater Geometry from LRO LEND and LOLA Observations, Lunar Planet. Sci., 2010, vol. 41, abs. 2224.Google Scholar
  42. Gibson, E.K. and Moore, G.W., Volatile-Rich Lunar Soil: Evidence of Possible Cometary Impact, Science, 1973, vol. 179, pp. 69–71.ADSCrossRefGoogle Scholar
  43. Gibson, E.K., Volatile Elements, Carbon, Nitrogen, Sulfur, Sodium, Potassium and Rubidium in the Lunar Regolith, Phys. Chem. Earth, 1977, vol. 10, no. 1, pp. 57–62.ADSCrossRefGoogle Scholar
  44. Gladstone, G.R., Hurley, D.M., Retherford, K.D., et al., LRO-LAMP Observations of the LCROSS Impact Plume, Science, 2010, vol. 330, pp. 472–476.ADSCrossRefGoogle Scholar
  45. Clark, R.N., Detection of Adsorbed Water and Hydroxyl on the Moon, Science, 2009, vol. 326, no. 5952, pp. 562–564.ADSCrossRefGoogle Scholar
  46. Gorenstein, P. and Bjorkholm, P., Detection of Radon Emanation from the Crater Aristarchus by the Apollo 15 Alpha Particle Spectrometer, Science, 1973, vol. 179, pp. 792–794.ADSCrossRefGoogle Scholar
  47. Greenwood, J.P., Itoh, S., Sakamoto, N., et al., Water in Apollo Rock Samples and the D/H of Lunar Apatite, Lunar Planet. Sci., 2010, vol. 41, abs 2439.Google Scholar
  48. Greenwood, J.P., Itoh, S., Sakamoto, N., et al., Extraterrestrial Hydrogen Isotope Composition of Water in Lunar Rocks, Nature Geosci., 2011a, vol. 4, pp. 79–82ADSCrossRefGoogle Scholar
  49. Greenwood, J.P., Itoh, S., Sakamoto, N., et al., Origin of Lunar Water and Evidence for a Wet Moon from D/H and Water in Lunar Apatites, Lunar Planet. Sci., 2011b, vol. 42, abs. 2439.Google Scholar
  50. Grieve, R.A.F. and Cintala, M.J., Planetary Impacts, in Ecyclopedia of the Solar System, Weissman, P.R., McFadden, L.-A., and Johnson, T.R., Eds., Acad. Press, 1999, pp. 845–876.Google Scholar
  51. Gruen, D., Siskind, B., and Wright, R., Chemical Implantation, Isotopic Trapping Effects, and Induced Hydroscopicity Resulting from 15 keV Ion Bombardment of Sapphire, J. Chem. Phys., 1976, vol. 65, pp. 363–378.ADSCrossRefGoogle Scholar
  52. Hartmann, W., Relative Crater Production Rates on Planets, Icarus, 1977, vol. 31, pp. 260–276.ADSCrossRefGoogle Scholar
  53. Hartmann, W.K. and Davis, D.R., Satellite-Sized Planetesimals and Lunar Origin, Icarus, 1975, vol. 24, pp. 504–515.ADSCrossRefGoogle Scholar
  54. Haskin, L. and Warren, P., Lunar Chemistry, in Lunar Sourcebook. A User Guide to the Moon, Heiken, G.H., Vaniman, D.T., and French, B.M., Eds., Cambridge Univ. Press, 1991, pp. 357–475.Google Scholar
  55. Hauri, E.H., Saal, A.E., Van Orman, J., et al., New Estimates of the Water Content of the Moon from Apollo 15 Picritic Glasses, Lunar and Planet. Sci., 2009, vol. 40, abs 2344.Google Scholar
  56. Hauri, E.H., Weinreich, T., Saal, A.E., et al., High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions, Science, 2011, vol. 333, no. 6039, pp. 213–215.ADSCrossRefGoogle Scholar
  57. Hawke, B.R., Coombs, C.R., Gaddis, L.R., et al., Remote Sensing and Geologic Studies of Localized Dark Mantle Deposits on the Moon, Proc. 10th Lunar and Planet. Sci. Conf., Houston, 1989, pp. 255–268.Google Scholar
  58. Head, J.W., III and Wilson, L., Alphonsus-Type Dark-Halo Craters: Morphology, Morphometry, and Eruption Conditions, Proc. 10th Lunar and Planet. Sci. Conf., Houston, 1979, pp. 2861–2897.Google Scholar
  59. Hiesinger, H., Jaumann, R., Neukum, G., and Head, J.W., Ages of Mare Basalts on the Lunar Nearside, J. Geophys. Res., 2000, vol. 105, pp. 29239–29275.ADSCrossRefGoogle Scholar
  60. Hiesinger, H., Head, J.W., Wolf, U., and Neukum, G., New Age Determinations of Lunar Mare Basalts in Mare Cognitum, Mare Nubium, Oceanus Procellarum and Other Nearside Mare, Lunar Planet. Sci., 2001, vol. 32, abs 1815.Google Scholar
  61. Housley, R.M., Grant, R.W., and Paton, N.E., Origin and Characteristics of Excess Fe Metal in Lunar Glass Welded Aggregates, Proc. 4th Lunar Sci. Conf., Houston, 1973, pp. 2737–2749.Google Scholar
  62. Housley, R.M., Cirlin, E.H., Paton, N.E., and Goldberg, I.B., Solar Wind and Micrometeorite Alteration of the Lunar Regolith, Proc. 5th Lunar Sci. Conf., Houston, 1974, pp. 2623–2642.Google Scholar
  63. Howard, K.A., Avalanche Mode of Motion: Implications from Lunar Examples, Science, 1973, vol. 180, no. 4090, pp. 1052–1055.ADSCrossRefGoogle Scholar
  64. Johnson, M.C., Anderson, A.T., and Rutherford, M.J., Chapter 8: Pre-Eruptive Volatile Contents of Magmas, in Reviews in Mineralogy, vol. 30: Volatiles in Magmas, Carroll, M.R. and Holloway, J.R., Eds., Washington: Mineralogical Soc. America, 1994, pp. 281–328.Google Scholar
  65. Kaplan, I.R. and Petrowski, C., Carbon and Sulfur Isotope Studies on Apollo 12 Lunar Samples, Proc. 2nd Lunar Sci. Conf., Houston, 1971, vol. 2, pp. 1397–1406.ADSGoogle Scholar
  66. Kelley, M.S. and Wooden, D.H., The Composition of Dust in Jupiter-Family Comets Inferred from Infrared Spectroscopy, Planet. Space Sci., 2009, vol. 57, no. 10, pp. 1133–1145.ADSCrossRefGoogle Scholar
  67. Kleine, T., Touboul, M., Bourdon, B., et al., Hf-W Chronometry and the Accretion and Early Evolution of Asteroids and Terrestrial Planets, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 5150–5188.ADSCrossRefGoogle Scholar
  68. Kozlova, E.A. and Shevchenko, V.V., Permanently Shaded Areas at the Lunar Poles during the Period of Regression of the Line of Nodes, Proc. 36th Microsymp. on Comparative Planetology, Moscow, Oct. 14–16, 2002.Google Scholar
  69. Kozlova, E.A., The Illumination Conditions of the South Pole Region of the Moon, European Planet. Sci. Congress (EPSC), Potsdam, 2009, vol. 4.Google Scholar
  70. Kozlova, E.A. and Lazarev, E.N., Crater Cabeus as Possible Cold Trap for Volatiles near South Pole of the Moon, Lunar Planet. Sci., 2010, vol. 41, abs 1779.Google Scholar
  71. Kozlova, E.A., Lazarev, E.N., Rodionova, J.F., and Shevchenko, V.V., Relief and Illumination of the Lunar Pole Regions on the Base of KAGUYA Data, Proc. Int. Symp. on Lunar Sci. (ISLS2010), Macao, 2010, pp. 183–187.Google Scholar
  72. Kozyrev, N., Volcanic Phenomena on the Moon, Nature, 1963, vol. 198, no. 4884, pp. 979–980.ADSCrossRefGoogle Scholar
  73. Kyser, T.K., Stable Isotope Variations in the Mantle, Stable Isotopes in High Temperature Geologic Processes, Valley, J.W., Taylor, H.P., and O’Neil, J.R., Eds., 1991; Rev. Mineral., 1986, vol. 16, pp. 141–164.Google Scholar
  74. Lawrence, D.J., Eke, V.R., Elphic, R.C., et al., Compositional Dependencies of Lunar High-Energy Epithermal Neutrons, Lunar Planet. Sci., 2011, vol. 42, abs. 2206.Google Scholar
  75. Lawson, S.L., Feldman, W.C., Lawrence, D.J., et al., Recent Outgassing from the Lunar Surface: The Lunar Prospector Alpha Particle Spectrometer, J. Geophys. Res., 2005, vol. 110, no. E9. doi: 10.1029/2005je002433Google Scholar
  76. Litvak, M.L., Mitrofanov, I.G., Sanin, A.B., et al., LEND Studies of Diversity of PSRs on the Moon, Lunar Planet. Sci., 2011, vol. 42, abs. 1765.Google Scholar
  77. Liu, Y., Boyce, J.W., Rossman, G.R., et al., Water in Lunar Mare Basalt: Confirmation from Apatite in Lunar Basalt 14053, Lunar Planet. Sci., 2010, vol. 41, abs 2467.Google Scholar
  78. Lucey, P.G., Hawke, B.R., Pieters, C.M., et al., A Compositional Study of the Aristarchus Region of the Moon Using Near-Infrared Reflectance Spectroscopy, J. Geophys. Res., 1986, vol. 91, pp. D344–D354.ADSCrossRefGoogle Scholar
  79. Manzon, B.M., Khrilev, I.L., and Yakovlev, O.I., To the Model of Components Differentiation under Vapor Cloud Expansion in Gravitational Field, Geokhim., 1990, no. 2, pp. 163–171.Google Scholar
  80. Margot, J.L., Campbell, D.B., Jurgens, R.F., and Slade, M.A., Locations of Cold Traps for Frozen Volatiles at the Lunar Poles from Radar Topographic Mapping, Science, 1999, vol. 2, no. 84, pp. 1658–1660.ADSCrossRefGoogle Scholar
  81. Mattern, P.L., Thomas, G.J., and Bauer, W., Hydrogen and Helium Implantation in Vitreous Silica, J. Vac. Sci. Technol., 1976, vol. 13, pp. 430–436.ADSCrossRefGoogle Scholar
  82. McCord, T.B., Taylor, L.A., Orlando, T.M., et al., Origin of OH/Water on the Lunar Surface Detected by the Moon Mineralogy Mapper, Lunar Planet. Sci., 2010, vol. 41, abs. 1860.Google Scholar
  83. McCord, T.B. and Combe, J.-Ph., Relationships of Widespread OH Presence in the Lunar Surface Materials with Lunar Physical Properties, Lunar Planet. Sci., 2011, vol. 42, abs. 1483.Google Scholar
  84. McCubbin, F.M., Steele, A., Hauri, E.H., et al., Nominally Hydrous Magmatism on the Moon, Proc. Nat. Acad. Sci. USA, 2010a. doi: 10.1073/pnas.1006677107Google Scholar
  85. McCubbin, F.M., Steele, A., Nekvasil, H., et al., Detection of Structurally Bound Hydroxyl in Apatite from Mare Basalt 15058.128 Using TOF-SIMS, Lunar Planet. Sci., 2010, vol. 41, abs. 2468.Google Scholar
  86. MCNPX User’s Manual Version 2.5.0, Pelowitz, D.D., Ed., Los Alamos Nat. Lab. Re. LA-CP-05-0369, 2005.Google Scholar
  87. Middlehurst, B., A Survey of Lunar Transient Phenomena, Phys. Earth Planet. Int., 1977, vol. 14, pp. 185–193.ADSCrossRefGoogle Scholar
  88. Mitrofanov, I.G., Sanin, A.B., Boynton, W.V., et al., Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND, Science, 2010, vol. 330, pp. 483–486.ADSCrossRefGoogle Scholar
  89. Mitrofanov, I.G., Litvak, M.L., Sanin, A.B., et al., Neutron Suppression Regions at Lunar Poles, as Local Areas of Water-Rich Permafrost, Lunar Planet. Sci., 2011, vol. 42, abs. 1787.Google Scholar
  90. Nozette, S., Lichtenberg, C.L., Spudis, P., et al., The Clementine Bistatic Radar Experiment, Science, 1996, vol. 274, pp. 1495–1498.ADSCrossRefGoogle Scholar
  91. Nozette, S., Spudis, P.D., Robinson, M.S., et al., Integration of Lunar Polar Remote-Sensing Data Sets: Evidence for Ice at the Lunar South Pole, J. Geophys. Res., 2001, vol. 106, no. E10, pp. 23253–23266.ADSCrossRefGoogle Scholar
  92. Ong, L., Asphaug, E.I., Korycansky, D., and Coker, R.F., Volatile Retention from Cometary Impacts on the Moon, Icarus, 2010, vol. 207, pp. 578–589.ADSCrossRefGoogle Scholar
  93. Oppenheimer, C., Volcanic Degassing, in Treatise on Geochemistry, vol. 3: The Crust, Davies, A.N., Holland, H.D., and Turekian, K.K., Eds., Elsevier, 2003, pp. 123–166.Google Scholar
  94. Papike, J., Taylor, L., and Simons, S., Lunar Minerals, in Lunar Sourcebook. A User Guide to the Moon, Heiken, G.H., Vaniman, D.T., and French, B.M., Eds., Cambridge Univ. Press, 1991, pp. 121–182.Google Scholar
  95. Petrov, D.V., Shkuratov, Yu.G., Stankevich D.G., et al., The Area of Cold Traps on the Lunar Surface, Sol. Syst. Res., 2003, vol. 37, no. 4, pp. 260–265.ADSCrossRefGoogle Scholar
  96. Pierazzo, E. and Melosh, H.J., Hydrocode Modeling of Oblique Impacts: The Fate of Projectile, Meteorit. Planet. Sci., 2000, vol. 35, pp. 117–130.ADSCrossRefGoogle Scholar
  97. Pieters, C.M., Taylor, L.A., Noble, S.K., et al., Space Weathering on Airless Bodies: Resolving a Mystery with Lunar Samples, Meteorit. Planet. Sci., 2000, vol. 35, no. 5, pp. 1101–1107.ADSCrossRefGoogle Scholar
  98. Pieters, C.M., Goswami, J.N., Clark, R.N., et al., Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan 1, Science, 2009, vol. 326, no. 5952, pp. 568–572.ADSCrossRefGoogle Scholar
  99. Robert, F., Solar System Deuterium/Hydrogen Ratio, in Meteorites and the Early Solar System II, Lauretta, D.S. and McSween, H.Y., Jr., Eds., Univ. Arizona Press, 2006, pp. 341–351.Google Scholar
  100. Rodionova, Zh.F., Karpov, A.A., Skobeleva, T.P., et al., Morfologicheskii catalog kraterov Luny (Morphological Catalog of Lunar Craters), Moscow: MGU, 1987.Google Scholar
  101. Rodionova, Zh.F., Dekhtyareva, K.I., Skobeleva, T.P., et al., The Main Morphological Characteristics of Lunar Craters, in Trugy Gos. Astron. Inst. im. P.K. Shternberga (Scientific Works of Sternberg Astronomical Institute), 1988, vol. 60.Google Scholar
  102. Saal, A.E., Hauri, E.H., Cascio, M.L., et al., Volatile Content of Lunar Volcanic Glasses and the Presence of Water in the Moon’s Interior, Nature, 2008, vol. 454, no. 7201, pp. 192–195, Available from: http://www.nature.com/nature/journal/v454/n7201/suppinfo/nature07047.html ADSCrossRefGoogle Scholar
  103. Saal, A.E., Hauri, E.H., van Orman, J.A., Rutherford, M.J., The Volatile Contents of the Apollo 15 Lunar Volcanic Glasses, Geochim. Cosmochim. Acta. Suppl., 2009, vol. 73, p. A1139.ADSCrossRefGoogle Scholar
  104. Sanin, A., Mitrofanov, I., Boynton, W., et al., Mapping of Lunar Hydrogen according to the LEND Neutron Measurements Onboard the NASA LRO, Lunar Planet. Sci., 2010, vol. 41, abs. 2437.Google Scholar
  105. Sanin, A., Mitrofanov, I., Boynton, W., et al., Global Mapping of Neutron Emission from the Moon according to LEND Data, Lunar Planet. Sci., 2011, vol. 42, abs. 1797.Google Scholar
  106. Shearer, C.K., Weidenbeck, M.G., Fowler, G.W., and Papike, J.J., S and Other Volatiles in Lunar Picritic Magmas and the Lunar Mantle. An Approach Using secondary Ion Mass Spectrometry, Lunar Planet. Sci., 1998, vol. 29, abs. 1284.Google Scholar
  107. Shearer, C.K., Hess, P.C., Wieczorek, M.A., et al., Thermal and Magmatic Evolution of the Moon, in New Views of the Moon. Reviews in Mineralogy and Geochemistry, Jolliff, B.L., Wieczorek, M.A., Shearer, C.K., and Niel, C.R., Eds., Chantilly, VA: Mineralogical Soc. Amer., 2006, vol. 60, pp. 365–518.Google Scholar
  108. Shevchenko, V.V., On the Cometary Origin of the Lunar Ice, Solar Syst. Res., 1999, vol. 33, no. 5, p. 400.ADSGoogle Scholar
  109. Shevchenko, V.V., Pinet, P.C., Chevrel, S., et al., The Current Avalanche Deposits in Lunar Crater Reiner: LRO Data, Lunar Planet. Sci., 2011, vol. 42, abs. 1161.Google Scholar
  110. Shoemaker, E.M. and Hackman, R.J., Stratigraphic Basis for a Lunar Time Scale, in The Moon, Kopal, Z. and Mikhailov, Z.K., Eds., London: Acad. Press, 1962, pp. 289–300.Google Scholar
  111. Simpson, R.A. and Tyler, G.L., Reanalysis of Clementine Bistatic Radar Data from the Lunar South Pole, J. Geophys. Res., 1999, vol. 104, no. E2, pp. 3845–3862.ADSCrossRefGoogle Scholar
  112. Siskind, B., Gruen, D., and Varma, K., Chemical Implantation of 10 keV HC and DC in Rutile, J. Vac. Sci. Technol., 1977, vol. 14, pp. 537–542.ADSCrossRefGoogle Scholar
  113. Spudis, P.D., The Geology of the South Pole of the Moon and Age of Shackleton Crater, Lunar Planet. Sci., 2008, vol. 39, abs. 1626.Google Scholar
  114. Spudis, P.D., Bussey, D.B.J., Butler, B., et al., Results of the MINI-SAR Imaging Radar, Chandrayaan 1 Mission to the Moon, Lunar Planet. Sci., 2010, vol. 41, abs. 1224.Google Scholar
  115. Sridharan, R., Ahmed, S.M., Das, T.P., et al., Direct Evidence for Water (H2O) in the Sunlit Lunar Ambience from CHACE on MIP of Chandrayaan I, Planet. Space Sci., 2010, vol. 58, pp. 947–950.ADSCrossRefGoogle Scholar
  116. Starukhina, L.V., Excess Hydrogen on the Lunar Poles: Water Ice or Solar Wind Induced OH?, Proc. 3rd Int. Conf. Exploration and Utilization of the Moon, Moscow: Russian Acad. Sci., Oct. 11–14, 1998, p. 38.Google Scholar
  117. Starukhina, L.V., On the Origin of Excess Hydrogen at the Lunar Poles, Sol. Syst. Res., 2000, vol. 34, no. 3, p. 215.ADSGoogle Scholar
  118. Starukhina, L.V. and Shkuratov, Y.G., The Lunar Poles: Water Ice or Chemically Trapped Hydrogen?, Icarus, 2000, vol. 147, no. 2, pp. 585–587.ADSCrossRefGoogle Scholar
  119. Starukhina, L.V., Polar Regions of the Moon as a Potential Repository of Solar-Wind Implanted Gases, Adv. Space Res., 2006, vol. 37, issue 1, pp. 50–58.ADSCrossRefGoogle Scholar
  120. Sunshine, J.M., Farnham, T.L., Feaga, L.M., et al., Temporal and Spatial Variability of Lunar Hydration as Observed by the Deep Impact Spacecraft, Science, 2009, vol. 326, no. 5952, p. 565.ADSCrossRefGoogle Scholar
  121. Taylor, J.F., Warren, P., Ryder, G., et al., Lunar Rocks, in Lunar Sourcebook. A User Guide to the Moon, Heiken, G.H., Vaniman, D.T., and French, B.M., Eds., Cambridge Univ. Press, 1991, pp. 183–284.Google Scholar
  122. Vasavada, A.R., Paige, D.A., and Wood, S.E., Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits, Icarus, 1999, vol. 141, no. 1, pp. 179–193.ADSCrossRefGoogle Scholar
  123. Watson, K., Murray, B., and Brown, H., On the Possible Presence of Ice on the Moon, J. Geophys. Res., 1961, vol. 66, no. 5, pp. 1598–1600.ADSCrossRefGoogle Scholar
  124. Weber, A., Saal, A.E., Hauri, E.H., et al., The Volatile Content and D/H Ratios of the Lunar Picritic Glasses, Lunar Planet. Sci., 2011, vol. 41, abs 2571.Google Scholar
  125. Weitz, C.M., Rutherford, M.J., Head, J.W. III, and McKay, D.S., Ascent and Eruption of a Lunar High-Titanium Magma as Inferred from the Petrology of the 74001/2 Drill Core, Meteorit. Planet. Sci., 1999, vol. 34, no. 4, pp. 527–540.ADSCrossRefGoogle Scholar
  126. Wilhelms, D.E., The Geologic History of the Moon, USGS Prof. Paper, 1987, no. 1348.Google Scholar
  127. Wilhelms, D.E. and McCauley, J.F., Geologic Map of the Near Side of the Moon, SGS Map 1-703 (1: 5000000 Scale), 1971.Google Scholar
  128. Wilhelms, D.E. and El-Baz, F., Geologic Map of the East Side of the Moon, USGS Map 1948 (1: 5000000 Scale),1977.Google Scholar
  129. Whitford-Stark, J.L., The Volcano-Tectonic Evolution of Mare Frigoris, Proc. 20th Lunar and Planet. Sci. Conf., Houston, 1990, pp. 175–185.Google Scholar
  130. Whitford-Stark, J.L. and Head, J.W., III, Stratigraphy of Oceanus Procellarum Basalts: Sources and Styles of Emplacement, J. Geophys. Res., 1980, vol. 85, pp. 6579–6609.ADSCrossRefGoogle Scholar
  131. Yakovlev, O.I., Markova, O.M., and Manzon, B.M., Role of Evaporation and Dissipation Processes in Moon Formation, Geokhim., 1987, no. 4, pp. 467–482.Google Scholar
  132. Yakovlev, O.I., Dikov, Yu.P., Gerasimov, M.V., et al., Factors that Determine the Composition of Moon Regolith Glasses. Experimental Research, Geokhim., 2003, no. 4, pp. 467–481.Google Scholar
  133. Zelenyi, L.M., Khartov, V.V., Mitrofanov, I.G., and Skalsky, A.A., “Luna Glob” and “Luna Resource” Missions, Proc 1st Moscow Solar System Symp., Moscow, Oct. 11–15, 2010.Google Scholar
  134. Zhang, J.A. and Paige, D.A., Cold-Trapped Organic Compounds at the Poles of the Moon and Mercury: Implications for Origins, Geophys. Res. Lett., 2009, vol. 36, p. L16203. doi: 10.1029/2009GL038614ADSCrossRefGoogle Scholar
  135. Zolensky, M.E., Zega, T.J., Yano, H., et al., Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples, Science, 2006, vol. 314, no. 5806, pp. 1735–1739.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. T. Basilevsky
    • 1
  • A. M. Abdrakhimov
    • 1
  • V. A. Dorofeeva
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations