Advertisement

Solar System Research

, Volume 46, Issue 1, pp 31–40 | Cite as

AOST: Fourier spectrometer for studying mars and phobos

  • O. I. Korablev
  • A. V. Grigor’ev
  • B. E. Moshkin
  • L. V. Zasova
  • F. Montmessin
  • A. B. Gvozdev
  • V. N. Shashkin
  • D. V. Patsaev
  • V. S. Makarov
  • S. V. Maksimenko
  • N. I. Ignatiev
  • A. A. Fedorova
  • G. Arnold
  • A. V. Shakun
  • A. I. Terentiev
  • A. V. Zharkov
  • B. S. Mayorov
  • Yu. V. Nikol’sky
  • I. V. Khatuntsev
  • G. Bellucci
  • M. Giuranna
  • R. O. Kuz’min
  • A. V. Rodin
Article

Abstract

An AOST Fourier spectrometer of the Phobos-Soil project is intended for studying Mars and Phobos by means of measurements of IR radiation spectra of the Martian surface and atmosphere, the Phobos surface, and the spectrum of solar radiation passing through the Martian atmosphere on its limb. The main scientific problems to be solved with the spectrometer on Mars are measurements of methane content, search for minor constituents, and study of diurnal variations in the temperature and atmospheric aerosol. The spectrometer will also study the Martian and Phobos surface both remotely and after landing. The spectral range of the instrument is 2.5–25 μm, the best spectral resolution (without apodization) is 0.6 cm−1, and the instantaneous field of view is 2.5°. The recording time of one spectrum is equal to 5 s in solar observations and 50 s in observations of Mars and Phobos. The instrument has self-thermal stabilization and two-axis pointing systems, as well as a built-in radiation source for flight calibration. The spectrometer mass is 4 kg, and power consumption is up to 13 W. Scientific problems, measurement modes, and, briefly, engineering implementation of the experiment are discussed in this work.

Keywords

Solar System Research Space Vehicle Fourier Spectrometer Martian Atmosphere Mars Global Surveyor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akim, E.L., Zaslavskii, G.S., Morskoi, I.M., et al., Delivery of Relic Substances from Phobos to the Earth—the Phobos-Soil Project: Ballistics, Navigation, and Flying Control, Astron. Vestn., 2010, vol. 44, no. 1, pp. 29–40.Google Scholar
  2. Arnold, G., Measurements of the Spectroscopic Emittance of Particulate Minerals and Remote Sensing Implications, Vibrational Spectroscopy, 1991, vol. 2, pp. 245–251.CrossRefGoogle Scholar
  3. Atreya, S.K., Mahaffy, P.R., and Wong, A.S., Methane and Related Trace Species on Mars: Origin, Loss, Implications for Life, and Habitability, Planet. Space Sci., 2007, vol. 55, pp. 358–369.ADSCrossRefGoogle Scholar
  4. Bernath, P.F., McElroy, C.T., Abrams, M.C., et al., Atmospheric Chemistry Experiment (ACE): Mission Overview, Geophys. Rev. Lett., 2005, vol. 32, p. 01.Google Scholar
  5. Bibring, J.P., Combes, M., Langevin, Y., et al., Results from the ISM Experiment, Nature, 1989, vol. 341, pp. 591–593.ADSCrossRefGoogle Scholar
  6. Bibring, J.P., Ksanfomality, L.V., Langevin, Y., et al., Composite KRFM-ISM Spectrum of Phobos (0.315–3.1 μm), Adv. Space Res., 1992, vol. 12, pp. 13–16.ADSCrossRefGoogle Scholar
  7. Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations, Science, 2005, vol. 307, pp. 1576–1581.ADSCrossRefGoogle Scholar
  8. Bishop, J.L., Pieters, C.M., and Burns, R.G., Reflectance and Mossbauer Spectroscopy of Ferrihydrite-Montmorillonite Assemblages as Mars Soil Analog Materials, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 4583–4595.ADSCrossRefGoogle Scholar
  9. Christensen, P.R., Anderson, D.L., Chase, S.C., et al., Results from the Mars Global Surveyor Thermal Emission, Science, 1998, vol. 279, no. 5357, p. 1692.ADSCrossRefGoogle Scholar
  10. Christensen, P.R., Morris, V.R., Lane, M.D., et al., Global Mapping of Martian Hematite Mineral Deposits: Remnants of Water-Driven Processes in the Early Mars, J. Geophys. Res., 2001, vol. 106, pp. 23873–23885.ADSCrossRefGoogle Scholar
  11. Christensen, P.R., Mehall, G.L., Silverman, S.H., et al., Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res., 2003a, vol. 108, no. E12.Google Scholar
  12. Christensen, P.R., Bandfield, J.L., Bell, J.F., III, et al., Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results, Science, 2003b, vol. 300, pp. 2056–2061.ADSCrossRefGoogle Scholar
  13. Christensen, P.R., Ruff, S.W., Fergason, R.L., et al., Initial Results from the Mini-TES Experiment in Gusev Crater from the Spirit Rover, Science, 2004, vol. 305, no. 5685, pp. 837–842.ADSCrossRefGoogle Scholar
  14. Cloutis, E.A., Hawthorne, F.C., Merzman, S.A., et al., Detection and Discrimination of Sulfate Minerals Using Reflectance Spectroscopy, Icarus, 2006, vol. 184, pp. 121–157.ADSCrossRefGoogle Scholar
  15. Conrath, B., Curran, R., Hanel, R., et al., Atmospheric and Surface Properties of Mars Obtained by Infrared Spectroscopy on Mariner, J. Geophys. Res., 1973, vol. 78, pp. 4267–4278.ADSCrossRefGoogle Scholar
  16. Conrath, B., Thermal Structure of the Martian Atmosphere During the Dissipation of the Dust Storm of 1971, Icarus, 1975, vol. 24, pp. 36–46.ADSCrossRefGoogle Scholar
  17. Erard, S. and Calvin, W., New Composite Spectra of Mars, 0.4–5.7 μm, Icarus, 1997, vol. 130, pp. 449–460.ADSCrossRefGoogle Scholar
  18. Ertel’, D., Moroz, V.I., Nopirakovskii, I.V., et al., IR Experiments at the “Venera-15” and “Venera-16” AMS. 1. Technique and the First Results, Kosm. Issled., 1985, vol. 23, pp. 191–205.ADSGoogle Scholar
  19. Forget, F., Improved Optical Properties of the Martian Atmospheric Dust for Radiative Transfer Calculations in the Infrared, Geophys. Rev. Lett., 1998, vol. 25, pp. 1105–1108.ADSCrossRefGoogle Scholar
  20. Formisano, V., Atreya, S.K., Encrenaz, T., et al., Detection of Methane in the Atmosphere of Mars, Science, 2004, vol. 306, pp. 1758–1761.ADSCrossRefGoogle Scholar
  21. Formisano, V., Angrilli, F., Arnold, G., et al., The Planetary Fourier Spectrometer (PFS) Onboard the European Mars Express Mission, Planet. Space Sci., 2005, vol. 53, pp. 963–974.ADSCrossRefGoogle Scholar
  22. Giuranna M., Roush T.L., Duxbury T., et al. Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos, Planet. Space Sci., 2011, in press, doi: 10.1016/j.pss.2011.01.019.Google Scholar
  23. Gondet, B., Bibring, J.-P., Langevin, Y., and Poulet, F., Phobos Observations by the OMEGA/Mars Express Hyperspectral Imager, European Planet. Sci. Congress 2009, Potsdam, Germany, 2009, p. 773.Google Scholar
  24. Gorbunov, G.G. and Moshkin, B.E., Fourier Spectrometers for the Study of Planetary Atmospheres, Opt. Zh., 2000, vol. 67, no. 5, pp. 69–75.Google Scholar
  25. Grassi, D., Fiorenza, C., Zasova, L.V., et al., The Martian Atmosphere above Great Volcanoes: Early Planetary Fourier Spectrometer Observations, Planet. Space Sci., 2005, vol. 53, pp. 1053–1064.ADSCrossRefGoogle Scholar
  26. Grigor’ev, A.V., Moshkin, B.E., Korablev, O.I., et al., Miniature AOST Fourier Spectrometer for Space Researches, Opt. Zh., 2009, vol. 76, no. 2, pp. 28–35.Google Scholar
  27. Hanel, R., Conrath, B., Hovis, W., et al., Investigation of the Martian Environment by Infrared Spectroscopy on Mariner 9, Icarus, 1972, vol. 17, pp. 423–442.ADSCrossRefGoogle Scholar
  28. Hanel, R.A., Conrath, B.J., Jennings, D.E., and Samuelson, R.E., Exploration of the Solar System by Infrared Remote Sensing. 2nd Edition, Cambridge: Cambridge Univ. Press, 2003.CrossRefGoogle Scholar
  29. Hapke, B.W., Theory of Reflectance and Emittance Spectroscopy, Arvidson, R.E. and Rycroft, M.J, Eds., Cambridge: Univ. Press, 1993.CrossRefGoogle Scholar
  30. Ignatiev, N.I., Grassi, D., and Zasova, L.V., Planetary Fourier Spectrometer Data Analysis: Fast Radiative Transfer Models, Planet. Space Sci., 2005, vol. 53, pp. 1035–1042.ADSCrossRefGoogle Scholar
  31. Korablev, O., Moroz, V.I., Petrova, E.V., and Rodin, A.V., Optical Properties of Dust and the Opacity of the Martian Atmosphere, Adv. Space Res., 2005, vol. 35, pp. 21–30.ADSCrossRefGoogle Scholar
  32. Krasnopolsky, V.A., Bjoraker, G.L., Mumma, M.J., and Jennings, D.E., High-Resolution Spectroscopy of Mars at 3.7 and 8 μm: A Sensitive Search of H2O2, H2CO, HCl, and CH4, and Detection of HDO, J. Geophys. Res., 1997, vol. 102, pp. 6525–6534.ADSCrossRefGoogle Scholar
  33. Krasnopolsky, V.A., Maillard, J.P., and Owen, T.C., Detection of Methane in the Martian Atmosphere: Evidence for Life?, Icarus, 2004, vol. 172, pp. 537–547.ADSCrossRefGoogle Scholar
  34. Ksanfomality, L.V. and Moroz, V.I., Spectral Reflectivity of Phobos’ Regolith within the Range 315–600 nm, Icarus, 1995, vol. 117, pp. 383–401.ADSCrossRefGoogle Scholar
  35. Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T., Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer on the Greenhouse Gases Observing Satellite for Greenhouse Gases Monitoring, Appl. Opt., 2009, vol. 48, pp. 6716–6733.ADSCrossRefGoogle Scholar
  36. Lane, M.D., Morris, R.V., Mertzman, S.A., and Christensen, P.R., Evidence for Platy Hematite Grains in Sinus Meridiani, Mars, J. Geophys. Res., 2002, vol. 107, p. E12.CrossRefGoogle Scholar
  37. Montmessin, F., Fouchet, T., and Forget, F., Modeling the Annual Cycle of HDO in the Martian Atmosphere, J. Geophys. Res., 2005, vol. 110, no. E9, p. 3006.CrossRefGoogle Scholar
  38. Mumma, M.J., Villanueva, G.L., Novak, R.E., et al., Strong Release of Methane on Mars in Northern Summer 2003, Science, 2009, vol. 323, pp. 1041–1045.ADSCrossRefGoogle Scholar
  39. Murchie, S., Thomas, N., Britt, D., et al., Mars Pathfinder Spectral Measurements of Phobos and Deimos: Comparison with Previous Data, J. Geophys. Res., 1999, vol. 104, pp. 9069–9079.ADSCrossRefGoogle Scholar
  40. Murchie, S.L., Choo, T., Humm, D., et al., MRO/CRISM Observations of Phobos and Deimos, 39th Lunar and Planet. Sci. Conf. League City, Texas, 2008, LPI Contribution no. 1391, p. 1434.Google Scholar
  41. Murchie, S.L., Seelos, F.P., Hash, C.D., et al., Compact Reconnaissance Imaging Spectrometer for Mars Investigation and Data Set from the Mars Reconnaissance Orbiter’s Primary Science Phase, J. Geophys. Res., 2009, vol. 114, p. D07.Google Scholar
  42. Mustard, J.F., Murchie, S.L., Pelkey, S.M., et al., Hydrated Silicate Minerals on Mars Observed by the Mars Reconnaissance Orbiter CRISM Instrument, Nature, 2008, vol. 454, pp. 305–309.ADSCrossRefGoogle Scholar
  43. Owen, T., Maillard, J.P., de Bergh, C., and Lutz, B.L., Deuterium on Mars: The Abundance of HDO and the Value of D/H, Science, 1988, vol. 240, pp. 1767–1770.ADSCrossRefGoogle Scholar
  44. Persky, M.J., A Review of Space Borne Infrared Fourier Transform Spectrometers for Remote Sensing, Rew. Sci. Instrum, 1995, vol. 66, pp. 4763–4797.ADSCrossRefGoogle Scholar
  45. Poulet, F., Bibring, J.-P., Mustard, J.F., et al., Phyllosilicates on Mars and Implications for Early Martian Climate, Nature, 2005, vol. 438, pp. 623–627.ADSCrossRefGoogle Scholar
  46. Ruff, S.W. and Christensen, P.R., Bright and Dark Regions on Mars: Particle Size and Mineralogical Characteristics Based on Thermal Emission Spectrometer Data, J. Geophys. Res., 2002, vol. 107, no. E12, p. 5127.CrossRefGoogle Scholar
  47. Salisbury, J.W. and Walter, L.W., Thermal Infrared (2.5–13.5 μm) Spectroscopic Remote Sensing of Igneous Rock Types on Particulate Planetary Surfaces, J. Geophys. Res., 1989, vol. 94, pp. 9192–9202.ADSCrossRefGoogle Scholar
  48. Salisbury, J.W, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, Pieters, C.M. and Englert, P.A.J., Eds., Cambridge: Univ. Press, 1993, p. 79–98.Google Scholar
  49. Santee, M. and Crisp, D., Thermal Structure and Dust Loading of the Martian Atmosphere During Late Southern Summer: Mariner 9 Revisited, J. Geophys. Res., 1993, vol. 98, pp. 3261–3279.ADSCrossRefGoogle Scholar
  50. Smith, M.D., Interannual Variability in TES Atmospheric Observations of Mars During 1999–2003, Icarus, 2004, vol. 167, pp. 148–165.ADSCrossRefGoogle Scholar
  51. Smith, M.D., Wolff, M.J., Spanovich, N., et al., One Martian Year of Atmospheric Observations Using MER Mini-TES, J. Geophys. Res., 2006, vol. 111, p. E12.CrossRefGoogle Scholar
  52. Zasova, L.V., Grassi, D., Formisano, V., and Maturilli, A., The Martian Atmosphere in the Region of the Great Volcanoes: Mariner 9 IRIS Data Revisited, Planet. Space Sci., 2001, vol. 49, no. 9, pp. 977–992.ADSCrossRefGoogle Scholar
  53. Zasova, L.V., Formisano, V., Grassi, D., et al., Martian Winter Atmosphere at North High Latitudes: Mariner 9 IRIS Data Revisited, Adv. Space Res., 2002, vol. 29, no. 2, pp. 151–156.ADSCrossRefGoogle Scholar
  54. Zasova, L.V., Formisano, V., Grassi, D., et al., Thermal Structure of the Martian Atmosphere Retrieved from the IR Spectrometry in the 15 μm CO2 Band: Input to MIRA, Adv. Space Res., 2005a, vol. 35, no. 1, pp. 8–13.ADSCrossRefGoogle Scholar
  55. Zasova, L.V., Formisano, V., Moroz, V.I., et al., Water Clouds and Dust Aerosols Observations with PFS MEX at Mars, Planet. Space Sci., 2005b, vol. 53, no. 10, pp. 1065–1077.ADSCrossRefGoogle Scholar
  56. Zasova, L.V., Formizano, V., Moroz, V.I., et al., Results of PFS measurements at Mars Express: Clouds and Dust in the End of South Summer. Comparison with OMEGA Images, Kosm. Issl., 2006, vol. 44, no. 4, pp. 319–331.Google Scholar
  57. Zelenyi, L.M., Zakharov, A.V., Polishchuk, G.M., and Martynov, M.B., Project of the Mission to Phobos, Sol. Sys. Res., 2010, vol. 44, no. 1, pp. 15–25.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. I. Korablev
    • 1
  • A. V. Grigor’ev
    • 1
  • B. E. Moshkin
    • 1
  • L. V. Zasova
    • 1
  • F. Montmessin
    • 2
  • A. B. Gvozdev
    • 1
  • V. N. Shashkin
    • 1
  • D. V. Patsaev
    • 1
  • V. S. Makarov
    • 1
  • S. V. Maksimenko
    • 1
  • N. I. Ignatiev
    • 1
  • A. A. Fedorova
    • 1
  • G. Arnold
    • 3
  • A. V. Shakun
    • 1
  • A. I. Terentiev
    • 1
  • A. V. Zharkov
    • 1
  • B. S. Mayorov
    • 1
  • Yu. V. Nikol’sky
    • 1
  • I. V. Khatuntsev
    • 1
  • G. Bellucci
    • 4
  • M. Giuranna
    • 4
  • R. O. Kuz’min
    • 1
    • 5
  • A. V. Rodin
    • 1
    • 6
  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia
  2. 2.LATMOS, Laboratory of Atmospheres, Media, and Space ObservationsSaint Quentin en YvelinesFrance
  3. 3.Institute for PlanetologyMünster UniversityMünsterGermany
  4. 4.Institute of Physics of Interplanetary SpaceIFSIRomeItaly
  5. 5.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  6. 6.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations