Solar System Research

, Volume 45, Issue 6, pp 471–497 | Cite as

History of tectonic deformation in the interior plains of the Caloris basin, mercury

  • A. T. Basilevsky
  • J. W. Head
  • C. I. Fassett
  • G. Michael


Analysis of images from the Messenger MDIS narrow angle camera imply that at least part of the radial graben of the Pantheon Fossae structure, and probably the structure as a whole, predate the deformation that led to circumferential ridges on the Caloris interior plains. This follows from structural analysis and comparison with similar geological relationships on Venus and the Moon, where graben are known to both postdate and predate ridges. Observations suggest that the Pantheon Fossae radial graben (extension) formed first, pre-dating observed circumferential graben (also extension), with ridges (compression) formed in between. This scenario puts constraints on the models for the deformation of the Caloris basin and its vicinity. Our observations and analysis are consistent with Pantheon Fossae having formed in a similar manner to Venusian astra/novae, where radial dikes that propagate away from a magmatic center led to graben formation. Our results also have implications for the length of time between the emplacement of the basin volcanic fill and the onset of the compressional stresss regime that led to ridge-formation. If the Pantheon Fossae structure formed before the emplacement of ridges, as we suggest, this means that compressional stresses took some time to develop sufficiently to deform the volcanic plains. Since the Caloris interior plains had to have been already in place when Pantheon Fossae formed, and since these plains represented a significant load to the underlying lithosphere, it is striking that compression took some time to develop. These observations may provide new information about the rigidity of the basin-filling material and will help constrain models for the mechanisms and timing of events within and around the Caloris basin.


Mercury Caloris basin structure Pantheon Fossae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aittola, M. and Kostama V.-P., Venusian Novae and Arachnoids: Characteristics, Differences and the Effect of the Geological Environment, Planet. Space Sci., 2000, vol. 48, pp. 1479–1489.ADSCrossRefGoogle Scholar
  2. Aittola, M. and Kostama, V.-P., Chronology of the Formation Process of Venusian Novae and the Associated Coronae, J. Geophys. Res., 2002, vol. 107, doi: 10.1029/2001JE001528.Google Scholar
  3. Aittola, M. and Raitala, J., Venusian Novae: Classification and Associations to Volcano-Tectonic Structures, Solar Syst. Res., 2007, vol. 41, pp. 395–412.ADSCrossRefGoogle Scholar
  4. Basilevsky, A.T., Aittola, M., Raitala, J., and Head, J.W., Venus Astra/Novae: Estimates of the Absolute Time Duration of Their Activity, Icarus, 2000, vol. 203, pp. 337–351.ADSCrossRefGoogle Scholar
  5. Basilevsky, A.T. and Raitala, J., Morphology of Selected Novae (Astra) from the Analysis of Magellan Images at Venus, Planet. Space Sci., 2002, vol. 50, pp. 21–39.ADSCrossRefGoogle Scholar
  6. Cintala, M.J. and Grieve, R.A.F., Scaling Impact Melting and Crater Dimensions: Implications for the Lunar Cratering Record, Meteorit. Planet. Sci., 1998, vol. 33, pp. 889–912.ADSCrossRefGoogle Scholar
  7. Crumpler, L.S. and Aubele, J.C., Volcanism on Venus, Encyclopedia of Volcanoes, Sigurdsaon, H., Ed., San Diego/London: Academic Press, 2000, pp. 727–769.Google Scholar
  8. Dzurisin, D., The Tectonic and Volcanic History of Mercury as Inferred from Studies of Scarps, Ridges, Troughs, and Other Lineaments, J. Geophys. Res., 1978, vol. 83, pp. 4883–4906.ADSCrossRefGoogle Scholar
  9. Elkins-Tanton, L.T. and Hager, B.H., Giant Meteoroid Impacts can Cause Volcanism, Earth Planet. Sci. Lett., 2005, vol. 239, pp. 219–232.ADSCrossRefGoogle Scholar
  10. Ernst, R.E., Grosfils, E.B., and Mege, D., Giant Dike Swarms: Earth, Venus, and Mars, Ann. Rev. Earth Planet. Sci., 2001, vol. 29, pp. 489–534.ADSCrossRefGoogle Scholar
  11. Fassett C.I. and Head, J.W., The Timing of Martian Valley Network Activity: Constraints from Buffered Crater Counting, Icarus, 2008, vol. 195, pp. 61–89.ADSCrossRefGoogle Scholar
  12. Fassett, C.I., Head, J.W., Blewett, D.T., et al., Caloris Impact Basin: Exterior Geomorphology, Stratigraphy, Morphometry, Radial Sculpture, and Smooth Plains Deposits, Earth Planet. Sci. Lett., 2009, vol. 285, pp. 297–308.ADSCrossRefGoogle Scholar
  13. Freed, A.M., Solomon, S.C., Watters, T.R., et al., Could Pantheon Fossae Be the Result of the Apollodorus Crater-Forming Impact within the Caloris Basin, Mercury?, Earth Planet. Sci. Lett., 2009, vol. 285, pp. 320–327.ADSCrossRefGoogle Scholar
  14. Golombek, M.P., Anderson, F.S., and Zuber, M.T., Martian Wrinkle Ridge Topography: Evidence for Subsurface Faults from MOLA, J. Geophys. Res., 2001, vol. 106, pp. 23, 811–23, 821.CrossRefGoogle Scholar
  15. Head, J.W. and Wilson, L., Magma Reservoirs and Neutral Buoyancy Zones on Venus: Implications for the Formation and Evolution of Volcanic Landforms, J. Geophys. Res., 1992, vol. 97, pp. 3877–3903.ADSCrossRefGoogle Scholar
  16. Head, J.W., Murchie, S.L., Prockter, L.M., et al., Volcanism on Mercury: Evidence from the First MESSENGER Flyby, Science, 2008, vol. 321, pp. 69–72.ADSCrossRefGoogle Scholar
  17. Head, J.W., Murchie, S.L., Prockter, L.M., et al., Evidence for Intrusive Activity on Mercury from the First MESSENGER Flyby, Earth Planet. Sci. Lett., 2009a, vol. 285, pp. 251–262.ADSCrossRefGoogle Scholar
  18. Head, J.W., Murchie, S.L., Prockter, L.M., et al., Volcanism on Mercury: Evidence from the First MESSENGER Flyby for Extrusive and Explosive Activity and the Volcanic Origin of Plains, Earth Planet. Sci. Lett., 2009b, vol. 285, pp. 227–242.ADSCrossRefGoogle Scholar
  19. Ivanov, B.A., Melosh, H.J., and Pierazzo, E., Basin-Forming Impacts: Reconnaissance Modeling, Geol. Soc. Amer. Special Paper 465: Large Meteorite Impacts and Planetary Evolution IV, Reimold, W.U. and Gibson, R.L., Ed., 2010, pp. 29–49.Google Scholar
  20. Janes, D.M., Squyres, S.W., Bindschadler, D.L., et al., Geophysical Models for the Formation and Evolution of Coronae on Venus, J. Geophys. Res., 1992, vol. 97, pp. 16055–16067.ADSCrossRefGoogle Scholar
  21. Kennedy, P.J., Freed, A.M., and Solomon, S.C., Mechanisms of Faulting in and Around Caloris Basin, Mercury, J. Geophys. Res., 2008, vol. 113, p. E08004, doi: 10.1029/2007JE002992.CrossRefGoogle Scholar
  22. Klimczak, C., Schultz, R.A., and Nahm, A.L., Evaluation of the Origin Hypotheses of Pantheon Fossae, Central Caloris Basin, Mercury, Icarus, 2010, vol. 209, pp. 262–270.ADSCrossRefGoogle Scholar
  23. Krassilnikov, A.S. and Head, J.W., Novae on Venus: Geology, Classification and Evolution, J. Geophys. Res., 2003, vol. 108, pp. 12-1–12-48.CrossRefGoogle Scholar
  24. Kulander, B.R., Barton, C.C., and Dean, S.L., The Application of Fractography to Core and Outcrop Fracture Investigations, U.S. Dept. Energy, METC/SP-79/3, Springfield, VA: U.S. Dept. of Commerce, National Tech. Inf. Service, 1979.Google Scholar
  25. Lachenbruch, A.H., Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost, Geol. Soc. Amer. Spec. Paper 70, 1962, p. 69.Google Scholar
  26. McGill, G.E., Wrinkle Ridges, Stress Domains, and Kinematics of Venusian Plains, Geophys. Res. Lett., 1993, vol. 20, pp. 2407–2410.ADSCrossRefGoogle Scholar
  27. Melosh, H.J. and McKinnon, W.B., The Tectonics of Mercury, Mercury, Vilas, F., Chapman, C.R., Matthews, M.S., Ed., Tucson: Univ. Arizona Press, 1988, pp. 374–400.Google Scholar
  28. Murchie, S.L., Watters, T.R., Robinson, M.S., et al., Geology of the Caloris Basin, Mercury: A New View from MESSENGER, Science, 2008, vol. 321, pp. 73–76.ADSCrossRefGoogle Scholar
  29. Neukum, G., Oberst, J., Hoffmann, H., et al., Geologic Evolution and Cratering History of Mercury, Planet. Space Sci., 2001, vol. 49, pp. 1507–1521.ADSCrossRefGoogle Scholar
  30. Oberst, J., Preusker, F., Phillips, R.J., et al., The Morphology of Mercury’s Caloris Basin as Seen in MESSENGER Stereo Topographic Models, Icarus, 2010, vol. 209, pp. 230–238.ADSCrossRefGoogle Scholar
  31. Oshigami, S. and Namiki, N., Cross-Sectional Profiles of Baltis Vallis Channel on Venus: Reconstructions from Magellan SAR Brightness Data, Icarus, 2007, vol. 190, pp. 1–14.ADSCrossRefGoogle Scholar
  32. Plescia, J.B. and Golombek, M.P., Origin of Planetary Wrinkle Ridges Based on the Study of Terrestrial Analogs, Geol. Soc. Am. Bull., 1986, vol. 97, pp. 1289–1299.CrossRefGoogle Scholar
  33. Prockter, L.M., Ernst, C.M., Denevi, B.W., et al., Evidence for Young Volcanism on Mercury from the Third MESSENGER Flyby, Science Express, 2010, doi: 10.1126/science.1188186.Google Scholar
  34. Schubert, G.D., Bindshadler, D., Janes, D.M., et al., Magellan Observations of Venusian Coronae: Geology, Topography and Distribution, EOS Trans. AGU 72, 1991, p. 175.Google Scholar
  35. Schultz, R.A., Okubo, C.H., Goudy, C.L., and Wilkins, S.J., Igneous Dikes on Mars Revealed by Mars Orbiter Laser Altimeter Topography, Geology, 2004, vol. 32, pp. 889–892.ADSCrossRefGoogle Scholar
  36. Spudis, P.D. and Guest, J.E., Stratigraphy and Geologic History of Mercury, in Mercury, Vilas, F., Chapman, C.R., and Matthews, M.S., Ed., Tucson, Ariz.: University of Arizona Press, 1988, pp. 118–164.Google Scholar
  37. Squyres, S.W., Janes, D.M., Baer, G., et al., The Morphology and Evolution of Coronae on Venus, J. Geophys. Res., 1992, vol. 94, pp. 13611–13634.ADSCrossRefGoogle Scholar
  38. Solomon, S.C., McNutt, R.L., Watters, T.R., et al., Return to Mercury: A global Perspective on Messenger’s First Mercury Flyby, Science, 2008, vol. 321, pp. 59–62.ADSCrossRefGoogle Scholar
  39. Stofan, E.R., Bindschadler, D.L., Head, J.W., Parmentier, E.M. Corona Structures on Venus: Models of Origin, J. Geophys. Res., 1991, vol. 96, pp. 20933–20946.ADSCrossRefGoogle Scholar
  40. Strom, R.G., Trask, N.J., and Guest, J.E., Tectonism and Volcanism on Mercury, J. Geophys. Res., 1975, vol. 80, pp. 2478–2507.ADSCrossRefGoogle Scholar
  41. Strom, R., Mercury, in Encyclopedia of the Solar System, Wessman, P.R., McFadden, L.-A., Johnson, T.V., Eds., Academic Press, 1999, pp. 123–145.Google Scholar
  42. van der Pluijm, B.A. and Marshak, S., Earth Structure: An Indroduction to Structural Geology and Tectonics, New York: W.W. Norton and Company, 2004, p. 656.Google Scholar
  43. Watters, T.R., Wrinkle Ridge Assemblages on the Terrestrial Planets, J. Geophys. Res., 1988, vol. 93, pp. 10236–10254.ADSCrossRefGoogle Scholar
  44. Watters, T.R., Nimmo, F., and Robinson, M.S., Extensional Troughs in the Caloris Basin of Mercury: Evidence of Lateral Crustal Flow, Geology, 2005, vol. 33, pp. 669–672.ADSCrossRefGoogle Scholar
  45. Watters, T.R. and Nimmo, F., The Tectonics of Mercury, in Planetary Tectonics, Watters, T.R., Schultz, R.A., Eds., Cambridge Univ. Press, 2009, pp. 15–80.Google Scholar
  46. Watters, T.R., Murchie, S.L., Robinson, M.S., et al., Emplacement and Tectonic Deformation of Smooth Plains in the Caloris Basin, Mercury, Earth Planet. Sci. Lett., 2009a, vol. 285, pp. 309–319.ADSCrossRefGoogle Scholar
  47. Watters, T.R., Solomon, S.C., Robinson, M.S., et al., The Tectonics of Mercury: The View after MESSENGER’s First Flyby, Earth Planet. Sci. Lett., 2009b, vol. 285, pp. 283–296, doi: 10.1016/j.epsl.2009.01.025.ADSCrossRefGoogle Scholar
  48. Watters, T.R., Head, J.W., Solomon, S.C., et al., Evolution of the Rembrandt Impact Basin on Mercury, Science, 2009c, vol. 324, pp. 618–621, doi: 10.1126/science.1172109.ADSGoogle Scholar
  49. Wilhelms, D.E., The Geologic History of the Moon, U.S. Geol. Surv. Prof. Pap. 1348, 1987, p. 302.Google Scholar
  50. Wilson, L. and Head J.W., Tharsis-Radial Graben Systems as the Surface Manifestation of Plume-Related Dike Intrusion Complexes: Models and Implications, J. Geophys. Res., 2002, vol. 107, 5057, doi: 10.1029/2001JE001593.CrossRefGoogle Scholar
  51. Wolfe, E.W., Bailey, N.G., Lucchitta, B., et al., The Geologic Investigation of the Taurus-Littrow Valley: Apollo 17 Landing Site, U.S. Geol. Surv. Prof. Pap. 1080, Washington, D.C., 1981, p. 280.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. T. Basilevsky
    • 1
    • 2
  • J. W. Head
    • 2
  • C. I. Fassett
    • 2
  • G. Michael
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of Geological SciencesBrown UniversityProvidenceUSA
  3. 3.Institute of GeosciencesFree University of BerlinBerlinGermany

Personalised recommendations