Advertisement

Solar System Research

, Volume 44, Issue 4, pp 290–310 | Cite as

Exoplanet status report: Observation, characterization and evolution of exoplanets and their host stars

  • H. Lammer
  • A. Hanslmeier
  • J. Schneider
  • I. K. Stateva
  • M. Barthelemy
  • A. Belu
  • D. Bisikalo
  • M. Bonavita
  • V. Eybl
  • V. Coudé du Foresto
  • M. Fridlund
  • R. Dvorak
  • S. Eggl
  • J. -M. Grießmeier
  • M. Güdel
  • E. Günther
  • W. Hausleitner
  • M. Holmström
  • E. Kallio
  • M. L. Khodachenko
  • A. A. Konovalenko
  • S. Krauss
  • L. V. Ksanfomality
  • Yu. N. Kulikov
  • K. Kyslyakova
  • M. Leitzinger
  • R. Liseau
  • E. Lohinger
  • P. Odert
  • E. Palle
  • A. Reiners
  • I. Ribas
  • H. O. Rucker
  • N. Sarda
  • J. Seckbach
  • V. I. Shematovich
  • A. Sozzetti
  • A. Tavrov
  • M. Xiang-Grüß
Article

Abstract

After the discovery of more than 400 planets beyond our Solar System, the characterization of exoplanets as well as their host stars can be considered as one of the fastest growing fields in space science during the past decade. The characterization of exoplanets can only be carried out in a well coordinated interdisciplinary way which connects planetary science, solar/stellar physics and astrophysics. We present a status report on the characterization of exoplanets and their host stars by reviewing the relevant space- and ground-based projects. One finds that the previous strategy changed from space mission concepts which were designed to search, find and characterize Earth-like rocky exoplanets to: A statistical study of planetary objects in order to get information about their abundance, an identification of potential target and finally its analysis. Spectral analysis of exoplanets is mandatory, particularly to identify bio-signatures on Earth-like planets. Direct characterization of exoplanets should be done by spectroscopy, both in the visible and in the infrared spectral range. The way leading to the direct detection and characterization of exoplanets is then paved by several questions, either concerning the pre-required science or the associated observational strategy.

Keywords

Total Electron Content Solar System Research European Space Agency Stellar Wind Hubble Space Telescope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bühl, J., Doherty, S., Eggl, S., et al., Opening a New Window to Other Worlds with Spectropolarimetry, Exp. Astron., 2010.Google Scholar
  2. Charbonneau, D., Berta, Z.K., Irwin, J., et al., A Super-Earth Transiting a Nearby Low-Mass Star, Nature, 2009, vol. 462, pp. 891–894.CrossRefADSGoogle Scholar
  3. Casertano, S., Lattanzi, M.G., Sozzetti, A., et al., Double-Blind Test Program for Astrometric Planet Detection with Gaia 2008, Astron. Astrophys., 2008, vol. 482, pp. 699–729.CrossRefADSGoogle Scholar
  4. Dvorak, R., Schneider, J., Lammer, H., and the CoRoT Team, CoRoTs First Seven Planets: An Overview, Astrophys. J., 2010.Google Scholar
  5. Ekenbäck, A., Holmström, M., Wurz, P., et al., Energetic Neutral Atoms around HD 209458b: Estimations of Magnetospheric Properties, Astrophys. J., 2010, vol. 709, pp. 670–679.CrossRefADSGoogle Scholar
  6. Glassman, T., Newhart, L., Barber, G., Turnbull, M., and NWO Study Team, Planning an Efficient Search for Extra-Solar Terrestrial Planets: How to Find Exo-Earths with New World Observer, American Astron. Soc. (AAS), 2009.Google Scholar
  7. Grießmeier, J.-M., Zaraka, P., Spreeuw, H., et al., Predicting Radio Fluxes of Known Extrasolar Planets, Astron. Astrophys., 2007, vol. 475, pp. 359–368.CrossRefADSGoogle Scholar
  8. Holmström, M., Ekenbäck, A., Selsis, F., et al., Energetic Neutral Atoms as the Explanation for the High-Velocity Hydrogen around HD 209458b, Nature, 2008, vol. 451, pp. 970–972, doi: 10.1038/nature06600CrossRefADSGoogle Scholar
  9. Koechlin, L., Serre, D., Debra, P., et al., The Fresnel Interferometric Imager, Exp. Astron., 2009, vol. 23, pp. 379–402.CrossRefADSGoogle Scholar
  10. Ksanformality, L.V., Transits of Extrasolar Planets, Solar Syst. Res., 2007, vol. 41, pp. 463–482.CrossRefADSGoogle Scholar
  11. Lammer, H., Kasting, J.F., Chassfière, E., et al., Atmospheric Escape and Evolution of Terrestrial Planets and Satellites, Space Sci. Rev., 2008, vol. 139, pp. 399–436, doi: 10.1007/511214-008-9413-5.CrossRefADSGoogle Scholar
  12. Lammer, H., Bredehöft, J.H., and Coustenis, A., What Makes a Planet Habitable?, Astron. Astrophys., 2009, vol. 17, pp. 181–249.CrossRefADSGoogle Scholar
  13. Lammer, H., Odert, P., Leitzinger, M., et al., Determining the Mass Loss Limit for Close-in Exoplanets: What Can We Learn from Transit Observations?, Astron. Astrophys., 2009, vol. 506, pp. 399–410, doi: 10.1051/0004-6361/200911922.CrossRefADSGoogle Scholar
  14. Léger, A., Rouan, D., Schneider, J., et al., Transiting Exoplanets from the CoRoT Space Mission VIII. CoRoT-7b: The First Super-Earth with Measured Radius, Astron. Astrophys., 2009, vol. 506, pp. 287–302, doi: 10.1051/0004-6361/200911933.CrossRefADSGoogle Scholar
  15. Lawson, P., Lay, O., Martin, S., et al., Terrestrial Planet Finder Interferometer: 2007–2008 Progress and Plans, Proc. SPIE, 2008, vol. 7013, pp. 70132N–70132N-15CrossRefGoogle Scholar
  16. Lillie, C., TRW TPF Architecture. Phase 1 Study, Phase 2 Final Report, 2001, Available from http://planetquest.jpl.nasa.gov/TPF/TPFrevue/FinlReps/Trw/TRW12Fnl.pdf
  17. Perryman, M.A.C., de Boer, K.S., Gilmore, G., et al., Composition, Formation and Evolution of the Galaxy, Astron. Astrophys., 2001, vol. 369, pp. 339–363.CrossRefADSGoogle Scholar
  18. Reiners, A., Bean, J.L., Huber, K.F., et al., Detecting Planets around Very Low Mass Stars with the Radial Velocity Method, Astrophys. J., 2010, vol. 710, no. 1.Google Scholar
  19. Ribas, I., Guinan, E.F., Güdel, M., et al., Evolution of the Solar Activity over Time and Effects on Planetary Atmospheres. I. High-Energy Irradiances (1–1700 Å), Astrophys. J., 2005, vol. 622, pp. 680–694.CrossRefADSGoogle Scholar
  20. Scalo, J., Kaltenegger, L., Segura, A.G., et al., M Stars as Targets for Terrestrial Exoplanet Searches and Biosignature Detection, Astrobiol., 2007, vol. 7, pp. 85–166.CrossRefADSGoogle Scholar
  21. Schneider, J., Boccaletti, A., Mawet, D., and the SEE-COAST Team, The Super Earth Explorer: A Coronagraphic Off-Axis Space Telescope, Exp. Astron., 2009, vol. 23, pp. 357–377.CrossRefADSGoogle Scholar
  22. Sozzetti, A., The Gaia Astrometric Survey EAS Publication Series, IAU Highlights Astron., 2010, vol. 15.Google Scholar
  23. Sozzetti, A., Astrometric Methods and Instrumentation to Identify and Characterize Extrasolar Planets: A Review, Publ. Astron. Soc. Pacif., 2005, vol. 117, pp. 1021–1048.CrossRefADSGoogle Scholar
  24. Stam, D., Spectropolarimetric Signatures of Earth-Like Extrasolar Planets, Astron. Astrophys., 2008, vol. 482, pp. 989–1007.CrossRefADSGoogle Scholar
  25. Tavrov, A.V., Physical Foundations of Achromatic Nulling Interferometry for Stellar Coronagraphy, J. Exp. Theor. Phys., 2008, vol. 107, pp. 942–951.CrossRefADSGoogle Scholar
  26. The CRIRES Search for Planets Around the Lowest-Mass Stars. I. High-Precision Near-Infrared Radial Velocities with an Ammonia Gas Cell J.L. Bean, A. Seifahrt, H. Hartman, H. Nilsson, G. Wiedemann, A. Reiners, T.J. Henry, S. Dreizler, 2010, ApJ, 713, 410.Google Scholar
  27. Vidal-Madjar, A., Lecavalier Des Etangs, A., Désert, J.-M., et al., An Extended Upper Atmosphere around the Extrasolar Planet HD 209458b, Nature, 2003, vol. 422, pp. 143–146.CrossRefADSGoogle Scholar
  28. Watson, A.J., Donahue, T.M., Walker, J.C.G., et al., The Dynamics of a Rapidly Escaping Atmosphere: Applications to the Evolution of Earth and Venus, Icarus, 1981, vol. 48, pp. 150–166.CrossRefADSGoogle Scholar
  29. Wood, B.E., Müller, H.-R., Zank, G., et al., Measured Mass Loss Rates of Solar-Like Stars as a Function of Age and Activity, Astrophys. J., 2002, vol. 574, pp. 412–425.CrossRefADSGoogle Scholar
  30. Wood, B.E., Müller, H.-R., Zank, G., et al., New Mass-Loss Measurements from Astrospheric Ly-α Absorption, Astrophys. J., 2005, vol. 628, pp. L143–L146.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • H. Lammer
    • 1
  • A. Hanslmeier
    • 2
  • J. Schneider
    • 3
  • I. K. Stateva
    • 4
  • M. Barthelemy
    • 5
  • A. Belu
    • 6
  • D. Bisikalo
    • 7
  • M. Bonavita
    • 8
  • V. Eybl
    • 9
  • V. Coudé du Foresto
    • 10
  • M. Fridlund
    • 11
  • R. Dvorak
    • 9
  • S. Eggl
    • 19
  • J. -M. Grießmeier
    • 12
  • M. Güdel
    • 19
    • 13
  • E. Günther
    • 14
  • W. Hausleitner
    • 1
  • M. Holmström
    • 15
  • E. Kallio
    • 16
  • M. L. Khodachenko
    • 1
  • A. A. Konovalenko
    • 17
  • S. Krauss
    • 1
  • L. V. Ksanfomality
    • 18
  • Yu. N. Kulikov
    • 19
  • K. Kyslyakova
    • 20
  • M. Leitzinger
    • 2
  • R. Liseau
    • 21
  • E. Lohinger
    • 9
  • P. Odert
    • 2
  • E. Palle
    • 14
  • A. Reiners
    • 22
  • I. Ribas
    • 23
  • H. O. Rucker
    • 1
  • N. Sarda
    • 24
  • J. Seckbach
    • 25
  • V. I. Shematovich
    • 7
  • A. Sozzetti
    • 26
  • A. Tavrov
    • 18
  • M. Xiang-Grüß
    • 27
  1. 1.Space Research Institute (IWF)Austrian Academy of SciencesGrazAustria
  2. 2.Institute for Geophysics and Meteorology (IGAM)University of GrazGrazAustria
  3. 3.Observatoire Paris-Site de Meudon (LUTH)ParisFrance
  4. 4.European Science FoundationStanding Committee for Physical and Engineering SciencesStrasbourgFrance
  5. 5.Laboratoire de Planétologie de Grenoble (CNRS-UJF)GrenobleFrance
  6. 6.Université de BordeauxBordeauxFrance
  7. 7.Institut for Astronomy (INASAN)Russian Academy of SciencesMoscowRussia
  8. 8.Osservatorio Astronomico di Padova (INAF)PadovaItaly
  9. 9.Institute for AstronomyUniversity of ViennaViennaAustria
  10. 10.Observatoiré de Paris (LESIA)ParisFrance
  11. 11.European Space Agency (ESA)ESTECNoordwijkThe Netherlands
  12. 12.ASTRONDwingelooThe Netherlands
  13. 13.Zürich Astrophysics Institute of Astronomy (ETH)ZürichSwitzerland
  14. 14.Instituto de Astrofisica de CanariasTenerifeSpain
  15. 15.The Swedish Institute of Space PhysicsKirunaSweden
  16. 16.Finish Meteorological Institute (FMI)HelsinkiFinland
  17. 17.Institute of Radio Astronomy in Kharkov of the Ukrainian Academy of SciencesKharkovUkraine
  18. 18.Space Research Institute (IKI)Russian Academy of SciencesMoscowRussia
  19. 19.Polar Geophysical Institute (PGI)Russian Academy of SciencesMurmanskRussia
  20. 20.N.I. Lobachevsky State UniversityNizhny NovgorodRussia
  21. 21.Onsala Space Observatory Chalmers University of TechnologyOnsalaSweden
  22. 22.Institut für AstrophysikUniversitát GöttingenGöttingenGermany
  23. 23.Institut d’Estudis Espacials de CatalunyaBarcelonaSpain
  24. 24.Astrium LtdStevenageUK
  25. 25.The Hebrew University of JerusalemJerusalemIsrael
  26. 26.INAF—Osservatorio Astronomico di TorinoTorinoItaly
  27. 27.Institut für Theoretische Physik und AstrophysikUniversitát zu KielKielGermany

Personalised recommendations