Solar System Research

, Volume 42, Issue 1, pp 1–7

Numerical simulation of the LCROSS impact experiment

  • V. V. Shuvalov
  • I. A. Trubetskaya
Article

Abstract

This study presents the results of the numerical modeling of the Lunar Crater Observation and Sensing Satellite (LCROSS) space experiment, which is scheduled for 2009 by NASA. It is demonstrated that a spacecraft with a mass of 2 tons impacting the Moon at a velocity of 2.5 km/s creates an ejecta plume with a size of more than 100 km and a mass exceeding 100 tons. The detailed characteristics of the ejecta are given and their relation to the impactor structure is investigated.

PACS numbers

96.12.Wx 91.55.Ax 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J.R., Ice in the Lunar Polar Regions, J. Geophys. Res., Ser. B, 1979, vol. 84, no. 10, pp. 5659–5667.CrossRefADSGoogle Scholar
  2. Dienes, J.K. and Walsh, J.M., Theory of Impact: Some General Principles and the Method of Eulerian Codes, in High-Velocity Impact Phenomena, Kinslow, R., Ed., New York: Academic, 1970, pp. 46–104.Google Scholar
  3. Feldman, W.C., Maurice, S., Binder, A.B., et al., Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles, Science, 1998, vol. 281, pp. 1496–1500.CrossRefADSGoogle Scholar
  4. Lundborg, N., Strength of Rock-Like Materials, Int. J. Rock Mech. Min. Sci., 1968, vol. 5, pp. 427–454.CrossRefGoogle Scholar
  5. McGlaun, J.M., Thompson, S.L., and Elrick, M.G., CTH: A Three-Dimensional Shock Wave Physics Code, Int. J. Impact Eng., 1990, vol. 10, pp. 351–360.CrossRefGoogle Scholar
  6. Melosh, H.J., Impact Cratering: A Geologic Process, New York: Oxford Univ. Press, 1989. Translated under the title Obrazovanie udarnykh kraterov: geologicheskii protsess, Moscow: Mir, 1994.Google Scholar
  7. Melosh, H.J. and Ivanov, B.A., Impact Crater Collapse, Annu. Rev. Earth Planet. Sci, 1999, vol. 27, pp. 385–425.CrossRefADSGoogle Scholar
  8. O’Keefe, J.D. and Ahrens, T.J., Complex Crater: Relationship of Stratigraphy and Rings To Impact Conditions, J. Geophys. Res., Ser. E, 1999, vol. 104, no. 11, pp. 27091–27104.CrossRefADSGoogle Scholar
  9. Pierazzo, E., Artemieva, N.A., and Ivanov, B.A., Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling, GSA Spec. Pap., 2004, vol. 384, pp. 443–457.Google Scholar
  10. Samarskii, A.A. and Popov, Yu.G., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for the Solution of Problems of Gas Dynamics), Moscow: Nauka, 1980.Google Scholar
  11. Shuvalov, V.V., Multi-Dimensional Hydrodynamic Code SOVA for Interfacial Flows: Application To Thermal Layer Effect, Shock Waves, 1999, vol. 9, no. 6, pp. 381–390.MATHCrossRefADSGoogle Scholar
  12. Shuvalov, V., Displacement of Target Material during Impact Cratering, Impact Markers in the Stratigraphic Record, Koeberl, C. and Martinez-Ruiz, F.C., Eds., ESF Impact, Berlin: Springer, 2003, pp. 121–135.Google Scholar
  13. Thompson, S.L. and Lauson, H.S., Improvements in the Chart D Radiation-Hydrodynamic CODE III: Revised Analytic Equations of State, Report of Sandia Nat. Lab., Albuquerque, New Mexico, 1972, no. SC-RR-71 0714.Google Scholar
  14. Tillotson, J.H., Metallic Equations of State for Hypervelocity Impact, General Atomic Report, 1962, GA-3216.Google Scholar
  15. Van Leer, B., Towards the Ultimate Conservative Difference Scheme IV. A New Approach to Numerical Convection, J. Comput. Phys., 1977, vol. 23, pp. 276–299.CrossRefADSGoogle Scholar
  16. Wünnemann, K., Collins, G.S., and Melosh, H.J., A Strain-Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets, Icarus, 2006, vol. 180, pp. 514–527.CrossRefADSGoogle Scholar
  17. Zharkov, V.N., Vnutrennee stroenie Zemli i planet (Internal Structure of the Earth and Planets), Moscow: Nauka, 1983.Google Scholar
  18. Zamyshlyaev, B.V. and Evterev, L.S., Modeli dinamicheskogo deformirovaniya i razrusheniya gruntovykh sred (Models of Dynamic Deformation and Destruction of Grounds), Moscow: Nauka, 1990.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. V. Shuvalov
    • 1
  • I. A. Trubetskaya
    • 1
  1. 1.Institute of Dynamics of GeospheresRussian Academy of SciencesMoscowRussia

Personalised recommendations