Solar System Research

, Volume 41, Issue 3, pp 220–230 | Cite as

Aerial bursts in the terrestrial atmosphere

  • V. V. Shuvalov
  • I. A. Trubetskaya
Article

Abstract

Impacts of cosmic bodies (stony and comet-like) are considered that “burn out” (or, more strictly, totally evaporate) in the atmosphere, which do not form craters but cause fires and destruction on the Earth’s surface. The heights of fragmentation, total evaporation, and deceleration of stony and comet-like meteoroids of different sizes, initial velocities, and impact angles are found from numerical simulations. The possible consequences of such falls are considered. The possible parameters of the Tunguska cosmic body are estimated.

PACS

96.12.ke 96.30.Za 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artemieva, N.A. and Bland, P.A., The Largest Meteorites on Earth, Meteor. Planet. Sci., 2003, vol. 38, suppl. abstract no. 153.Google Scholar
  2. Avilova, I.V., Biberman, L.M., Vorob’ev, V.S., et al., Opticheskie svoistva goryachego vozdukha (Optical Properties of Hot Air), Moscow: Nauka, 1970.Google Scholar
  3. Ben-Menachem, A., Source Parameters of the Siberian Explosion on June 30, 1908 from Analysis and Synthesis of Seismic Signals at Four Stations, Phys. Earth and Planet. Int., 1975, vol. 11, pp. 1–35.CrossRefADSGoogle Scholar
  4. Boslough, M.B., Crawford, D.A., Robinson, A.C., et al., Mass and Penetration Depth of Shoemaker-Levy 9 Fragments from Time-Resolved Photometry, Geophys. Rev. Lett., 1994, vol. 21, no. 14, pp. 1555–1558.CrossRefADSGoogle Scholar
  5. Boslough, M.B. and Crawford, D.A., Shoemaker-Levy 9 and Plume-Forming Collisions on Earth, Near-Earth Objects, Remo, J.L., Ed., New York: Academy, 1997, pp. 236–282.Google Scholar
  6. Bronshten, V.A., Fizika meteomykh yavlenii (Physics of Meteoric Phenomena), Moscow: Nauka, 1981.Google Scholar
  7. Fiske, P.S., Schnetzler, C.C., McHone, J., et al., Layered Tektites of Southeast Asia: Field Studies in Central Laos and Vietnam, Meteor. Planet. Sci., 1999, vol. 34, pp. 757–761.ADSCrossRefGoogle Scholar
  8. Grigoryan, S.S., On Motion and Destruction of Meteorites in Planets’ Atmospheres, Kosm. Issled., 1979, vol. 17, no. 6, pp. 875–893.ADSGoogle Scholar
  9. Harding King, W.J., Travels in the Libyan Desert, Geogr. J., 1912, vol. 39, pp. 133–137.CrossRefGoogle Scholar
  10. Ivanov, B.A., Size Distribution of Impact Craters and Asteroids, Catastrophic Effects of Cosmic Bodies, Adushkin, V.V. and Nemchinov, I.V., Eds., Moscow: IKTs “Akademkniga”, 2005, pp. 118–150.Google Scholar
  11. Kosarev, I.B., Loseva, T.V., and Nemchinov, I.V., Vapor Optical Properties and Ablation of Large Chondrite and Ice Bodies in the Earth’s Atmosphere, Astron. Vestn., 1996, vol. 30, no. 4, pp. 307–320 [Sol. Syst. Res. (Engl. Transl.), vol. 30, no. 4, p. 265].Google Scholar
  12. Kosarev, I.B., Calculation of Thermodynamical and Optical Properties of Vapors of the Material of Cosmic Bodies Entering the Earth’s Atmosphere, Inzh.-Fiz. Zh., 1999, vol. 72, no. 6, pp. 1067–1075.Google Scholar
  13. Kuznetsov, N.M., Termodinamicheskie funktsii i udarnye adiabaty vozdukha pri vysokikh temperaturakh (Thermodynamic Functions and Shock Adiabats for Air at High Temperatures), Moscow: Mashinostroenie, 1965.Google Scholar
  14. Mac Low, M.-M. and Zahnle, K.J., Explosion of Comet Shoemaker-Levy 9 on Entry into the Jovian Atmosphere, Astrophys. J., 1994, vol. 434, no. 1, part 2, pp. L33–L36.CrossRefADSGoogle Scholar
  15. Melosh, H.J., Impact Cratering: A Geologic Process, New York: Oxford Univ. Press, 1989. Translated under the title Obrazovanie udarnykh kraterov: geologicheskii protsess, Moscow: Mir, 1994.Google Scholar
  16. Nemchinov, I.V., Artem’ev, V.I., Bergel’son, V.I., et al., Formation of New Structures of Gas Dynamic Flows during Density Perturbations in Thin Long Channels ahead Shock Fronts, Mat. Model., 1989, vol. 1, no. 8, pp. 1–11.MATHMathSciNetGoogle Scholar
  17. Nemchinov, I.V., Svetsov, V.V., and Shuvalov, V.V., Fundamental Factors of Asteroid Danger, Catastrophic Effects of Cosmic Bodies, Adushkin, V.V. and Nemchinov, I.V., Eds., Moscow: IKTs “Akademkniga”, 2005, pp. 12–61.Google Scholar
  18. Pasechnik, I.P., Explosion Parameters Estimated from Seismic and Mikrobaric Data, in Kosmicheskoe veshchestvo na Zemle (Cosmic Matter on the Earth), Novosibirsk: Nauka, 1976, pp. 24–54.Google Scholar
  19. Shoemaker, E.M., Asteroid and Comet Bombardment of the Earth, Ann. Rev. Earth Planet. Sci., 1983, vol. 11, pp. 461–494.CrossRefADSGoogle Scholar
  20. Shuvalov, V.V., Artem’eva, N.A., and Nemtchinov, I.V., Numerical Simulations of the Impacts Action on the Atmosphere of the Earth, Proc. of the 4th Int. Workshop on Sci. Network on Impact Cratering and Evolution of Planet Earth, Montanari, A. and Coccioni, R., Eds., Porotonovo di Ancona, Italy, 1995, pp. 146–147.Google Scholar
  21. Shuvalov, V.V., Multi-Dimensional Hydrodynamic Code SOVA for Interfacial Flows: Application To Thermal Layer Effect, Shock Waves, 1999, vol. 9, no. 6, pp. 381–390.MATHCrossRefADSGoogle Scholar
  22. Shuvalov, V.V., Artem’eva, N.A., and Kosarev, I.B., 3D Hydrodynamic Code SOVA for Multimaterial Flows, Application To Shoemaker-Levy 9 Comet Impact Problem, Int. J. Impact Eng., 1999, vol. 23, pp. 847–858.CrossRefGoogle Scholar
  23. Shuvalov, V.V. and Artemieva, N., A Numerical Modeling of Tunguska-Like Impacts, Planet. Space Sci., 2002, vol. 50/2, pp. 181–192.CrossRefADSGoogle Scholar
  24. Stulov, V.P., Interaction of Cometary Nucleus with Planet’s Atmosphere, Tez. dokl. Mezhdunar. konf. “Sovremennye problemy teoreticheskoi astronomii” (Proc. of the Int. Conf. “Present-Day Problems of Theoretical Astronomy”), St. Petersburg, 1994, pp. 82–83.Google Scholar
  25. Svetsov, V.V., Nemtchinov, I.V., and Teterev, A.V., Disintegration of Large Meteoroids in Earth’s Atmosphere: Theoretical Models, Icarus, 1995, vol. 116, no. 1, pp. 131–153.CrossRefADSGoogle Scholar
  26. Svetsov, V.V., Where Have the Debris of the Tunguska Meteoroid Gone?, Astron. Vestn., 1996a, vol. 30, no. 5, pp. 427–441 [Sol. Syst. Res. (Engl. Transl.), vol. 30, no. 5, p. 378].Google Scholar
  27. Svetsov, V.V., Total Ablation of the Debris from the 1908 Tunguska Explosion, Nature, 1996b, vol. 383, pp. 697–699.CrossRefADSGoogle Scholar
  28. Svetsov, V.V., Glazing Meteoroids Could Ignite Continental-Scale Fires, Catastrophic Events and Mass Extinctions: Impacts and Beyond, Koeberl, C. and MacLeod, K.G., Eds., Soc. Am. Spec. Paper 356, 2002, pp. 685–694.Google Scholar
  29. Svetsov, V.V., Estimation of Energy of Surface Waves at Explosions in the Atmosphere and Parameters of the Sources of Tunguska Phenomenon, Fiz. Zemli., 2007 (in press).Google Scholar
  30. Toon, O.B., Zahnle, K.J., Turco, R.P., et al., Environmental Perturbation Caused by Asteroid Impacts, Hazards due to Comets and Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1994, pp. 791–826.Google Scholar
  31. Vasil’ev, N.V., Tungusskii “meteorit”. Kosmicheskii fenomen leta 1908 (Tunguska Meteorite. Cosmic Phenomenon of the Summer 1908), Moscow: Russkaya panorama, 2004.Google Scholar
  32. Wasson, J.T. and Boslough, M.B.E., Large Aerial Bursts: An Important Class of Terrestrial Accretionary Events, Catastrophic Events and Mass Extinctions: Impact and Beyond. LPI Contrib. no. 1053, Houston: Lunar and Planet. Inst., 2000, pp. 239–240.Google Scholar
  33. Wasson, J.T., Large Aerial Bursts: An Important Class of Terrestrial Accretionary Events, Astrobiology, 2003, vol. 3, no. 1, pp. 163–179.CrossRefADSGoogle Scholar
  34. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 1966.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. V. Shuvalov
    • 1
  • I. A. Trubetskaya
    • 1
  1. 1.Institute of Dynamics of GeospheresRussian Academy of SciencesMoscowRussia

Personalised recommendations