Advertisement

Solar System Research

, Volume 40, Issue 5, pp 355–374 | Cite as

Search for causes of the low epithermal neutron flux anomaly in the Arabia Terra region (Mars)

  • A. T. Basilevsky
  • A. V. Rodin
  • J. Raitala
  • G. Neukum
  • S. Werner
  • A. S. Kozyrev
  • A. B. Sanin
  • I. G. Mitrofanov
  • J. W. Head
  • W. Boynton
  • R. S. Saunders
Article

Abstract

A geologic analysis of 274 images acquired by the high-resolution MOC camera onboard the Mars Global Surveyor spacecraft within the Arabia Terra low neutron flux anomaly (which is indicative of an anomalously high abundance of hydrogen: up to 16 wt % of the equivalent amount of water) was performed. Correlation between the enhanced abundance of equivalent water with the presence of dust on the surface was found. Since dust plays a key role in condensation of water from the atmosphere, we suppose that the anomalies could result from the retention of atmospheric moisture. To analyze this suggestion, we performed a theoretical modeling that allowed us to map the planetary-scale distributions of several meteorological parameters responsible for the atmospheric moisture condensation. Two antipodal regions coinciding rather well with the Arabia Terra anomaly and the geographically antipodal anomaly southwest of Olympus Mons were found in the maps. This suggests that the anomalies are rather recent than ancient formations. They were probably formed by a sink of moisture from the atmosphere in the areas where present meteorological conditions support this sink. Geological parameters, primarily the presence of dust, only promote this process. We cannot exclude the possibility that the Martian cryosphere, rather than the atmosphere, supplied the studied anomalies with moisture during their formation: the thermodynamic conditions in the anomaly areas could block the moisture flux from the Martian interior in the upper regolith layer. The moisture coming from the atmosphere or from the interior is likely held as chemically bound water entering into the structure of water-bearing minerals (probably, hydrated magnesium sulfates) directly from the vapor; or the moisture precipitates as frost, penetrates into microfissures, and then is bound in minerals. Probably, another geologic factor—the magnesium sulfate abundance—works in the Arabia Terra anomaly.

PACS numbers

96.30.Gc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banfield, D.B., Conrath, J.C., Pearl, M., et al., Thermal Tides and Stationary Waves on Mars as Revealed by Mars Surveyor Thermal Emission Spectrometer, J. Geophys. Res., Ser. E, 2000, vol. 105, no. 4, pp. 9521–9538.CrossRefADSGoogle Scholar
  2. Basilevsky, A.T., Ivanov, B.A., Florenskii, K.P., et al., Udarnye kratery na Lune i planetakh (Impact Craters on the Moon and Planets), Moscow: Nauka, 1983.Google Scholar
  3. Basilevsky, A.T., Litvak, M.L., Mitrofanov, I.G., et al., Search for Traces of Chemically Bound Water in the Martian Surface Layer Based on HEND Measurements onboard the 2001 Mars Odyssey Spacecraft, Astron. Vestn., 2003, vol. 37, no. 5, pp. 423–434 [Sol. Syst. Res. (Engl. Transl.), vol. 37, no. 5, pp. 387–396].Google Scholar
  4. Bell, J.F., Squyres, S.W., Arvidson, R.E., et al., Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum, Science, 2004, vol. 306, pp. 1703–1709.CrossRefADSGoogle Scholar
  5. Biemann, K., Oro, J., Toulmin, P., III, et al., The Search for Organic Substances and Inorgainic Volatile Compounds in the Surface of Mars, J. Geophys. Res., 1977, vol. 82, pp. 4641–4658.ADSGoogle Scholar
  6. Bish, D.L., Carey, J.W., Vaniman, DT., and Chipera, S.J., Stability of Hydrous Minerals on the Martian Surface, Icarus, 2003, vol. 164, pp. 96–103.CrossRefADSGoogle Scholar
  7. Boynton, W.V., Feldman, W.C., Squyres, S.W., et al., Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits, Science, 2002, vol. 297, pp. 81–85.CrossRefADSGoogle Scholar
  8. Brass, G.W., Stability of Brines on Mars, Icarus, 1980, vol. 42, pp. 20–28.CrossRefADSGoogle Scholar
  9. Carr, M., Water on Mars, New York: Oxford Univ. Press, 1996.Google Scholar
  10. Chipera, S.J., Vaniman, D.T., Bish, D.L., et al., Experimental Stability and Transformation Kinetics of Magnesium Sulfate Hydrates that May Be Present on Mars, Lunar Planet. Sci., 2005, vol. 36, Abstract #1497.Google Scholar
  11. Christensen, P.R., Bandfield, J.L., Hamilton, V.C., et al., Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results, J. Geophys. Res., 2001, vol. 106, pp. 23873–23885.CrossRefADSGoogle Scholar
  12. Christensen, P.R., Malin, M.C., Morris, R.V., et al., Martian Hematite Mineral Deposits: Remnants of Water Driven Processes on Early Mars, J. Geophys. Res., 2001, vol. 106, p. 885.Google Scholar
  13. Edgett, K.S., Butler, B.J., Zimbelman, J.R., and Hamilton, V.E., Geologic Context of the Mars Radar “Stealth” Region in Southwestern Tharsis, J. Geophys. Res., 1997, vol. 102, p. 567.Google Scholar
  14. Farmer, C.B. and Doms, P.E., Global and Seasonal Water Vapor on Mars and Implications for Permafrost, J. Geophys. Res., 1979, vol. 84, pp. 2881–2888.ADSGoogle Scholar
  15. Fedorova, A.A., Rodin, A.V., and Baklanova, I.V., MAWD Observations Revisited: Seasonal Behavior of Water Vapor in the Martian Atmosphere, Icarus, 2004, vol. 171, pp. 54–67.CrossRefADSGoogle Scholar
  16. Feldman, W.C., Boynton, W.V., Tokar, R.L., et al., Global Distribution of Neutrons from Mars: Results from Mars Odyssey, Science, 2002, vol. 297, pp. 75–78.CrossRefADSGoogle Scholar
  17. Feldman, W.C., Prettyman, T.H., Maurice, S., et al., Topographic Control of Hydrogen Deposits at Low Latitudes of Mars, J. Geophys. Res., Ser. E, 2005, vol. 110, p. 11009.CrossRefADSGoogle Scholar
  18. Ferri, F., Smith, P.H., Lemmon, M., and Renno, N.O., Dust Devils As Observed by Mars Pathfinder, J. Geophys. Res., Ser. E, 2003, vol. 108, no. 12, Cite 5133.Google Scholar
  19. Fialips, C.I., Carey, J.W., Vaniman, D.T., et al., Hydration States of Zeolites, Clays, and Hydrated Salts Under Present-Day Martian Surface Conditions: Can Hydrous Minerals Account for Mars Odyssey Observations of Near Equatorial Water-Equivalent Hydrogen, Icarus, 2005, vol. 178, no. 1, pp. 74–83.CrossRefADSGoogle Scholar
  20. Greeley, R. and Guest, J.E., Geologic Map of the Eastern Equatorial Region of Mars, Atlas of Mars, Map I-1802-B, USGS, 1987.Google Scholar
  21. Hartmann, W.K. and Neukum, G., Cratering Chronology and Evolution of Mars, Space Sci. Rev., 2001, vol. 96, pp. 165–194.CrossRefADSGoogle Scholar
  22. Helbert, J., Reiss, D., Hauber, E., and Benkhoff, J., Limits on the Burial Depth of Glacial Ice Deposits on the Flanks of Hecates Tholus, Mars, Geophys. Rev. Lett., 2005, vol. 32, Cite ID.L17201.Google Scholar
  23. Hourdin, F., A New Representation of the Absorption by the CO2 15-Microns Band for a Martian General Circulation Model, J. Geophys. Res., Ser. E, 1992, vol. 97, no. 11, pp. 18319–18335.ADSCrossRefGoogle Scholar
  24. Howard, A.D., Moore, J.M., and Irwin, R.P., An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 1. Valley Network Incision and Associated Deposits, J. Geophys. Res., Ser. E, 2005, vol. 110, no. 12, p. 14.Google Scholar
  25. Irwin, R.P., Howard, A.D., Craddock, R.A., and Moore, J.M., An Intense Terminal Epoch of Widespread Fluvial Activity on Early Mars: 2. Increased Runoff and Paleolake Development, J. Geophys. Res., Ser. E, 2005, vol. 110, no. 12, p. 15.Google Scholar
  26. Jakosky, B.M. and Haberle, R.M., Year-To-Year Instability of the Mars South Polar Cap, J. Geophys. Res., 1990, vol. 95, pp. 1359–1365.ADSGoogle Scholar
  27. Jakosky, B.M., Henderson, B.G., and Mellon, M.T., Chaotic Obliquity and the Nature of the Martian Climate, J. Geophys. Res., 1995, vol. 100, pp. 1579–1584.CrossRefADSGoogle Scholar
  28. Jakosky, B.M., Mellon, M.T., Kieffer, H.H., et al., The Thermal Inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res., 2000, vol. 105, pp. 9643–9652.CrossRefADSGoogle Scholar
  29. Jakosky, B.M., Mellon, M.T., Varnes, E.S., et al., Mars Low-Latitude Neutron Distribution: Possible Remnant Near-Surface Water Ice and a Mechanism for Its Recent Emplacement, Icarus, 2005, vol. 175, no. 1, pp. 58–67.CrossRefADSGoogle Scholar
  30. Kozyrev, A.S., Mitrofanov, I.G., Litvak, M.L., et al., Subsurface Water Distribution in Martian Equational Regions from HEND/Odyssey Data, Vernadsky-Brown Microsymposium 38, Moscow, 2003, Abstract MS050 (CD-ROM).Google Scholar
  31. Kuzmin, R.O. and Zabalueva, E.V., On Salt Solutions in the Martian Cryolithosphere, Astron. Vestn., 1998, vol. 32, no. 3, pp. 213–225 [Sol. Syst. Res. (Engl. Transl.), vol. 32, no. 3, pp. 187–197].Google Scholar
  32. Kuzmin, R.O., Christensen, P.R., and Zolotov, M.Yu., Global Mapping of Martian Bound Water at 6.1 Microns Based on TES Data: Seasonal Hydration-Dehydration of Surface Minerals, Lunar Planet. Sci., 2004, vol. 35, Abstract #1810.Google Scholar
  33. Kuzmin, R.O., Christensen, P.R., Zolotov, M.Yu., and Anwar, S., Seasonal Variations of the Bound Water Content on the Martian Surface: Global Mapping of the 6.1 μm Emissivity Band Based on TES Data, Vernadsky-Brown Microsymposium 42, Moscow, 2005, Abstract ms42-42 (CD-ROM).Google Scholar
  34. Lane, M.D., Christensen, P.R., and Hartmann, W.K., Utilization of the THEMIS Visible and Infrared Imaging Data for Crater Population Studies of the Meridiani Planum Landing Site, Geophys. Rev. Lett., 2003, vol. 30; DOI: 10.1029/2003GL017183.Google Scholar
  35. Laskar, J., Levrard, B., and Mustard, J.F., Orbital Forcing of the Martian Polar Layered Deposits, Nature, 2002, vol. 419, pp. 375–377.CrossRefADSGoogle Scholar
  36. Malin, M.C. and Edgett, K.S., Sedimentary rocks of early Mars, Science, 2000, vol. 290, no. 5498, pp. 1927–1937.CrossRefADSGoogle Scholar
  37. Malin, M.C. and Edgett, K.S., Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise Through Planetary Mission, J. Geophys. Res., 2001, vol. 106, pp. 23409–23570.ADSGoogle Scholar
  38. Mangold, N., Maurice, S., Feldman, W.C., et al., Spatial Relationships Between Patterned Ground and Ground Ice Detected by the Neutron Spectrometer on Mars, J. Geophys. Res., Ser. E, 2004, vol. 109, p. 08001.CrossRefGoogle Scholar
  39. Mellon, M.T. and Jakosky, B.M., Geographic Variations in the Thermal and Diffusive Stability of Ground Ice on Mars, J. Geophys. Res., 1993, vol. 98, pp. 3345–3364.ADSCrossRefGoogle Scholar
  40. Mellon, M.T. and Jakosky, B.M., The Distribution and Behavior of Martian Ground Ice During Past and Present Epochs, J. Geophys. Res., 1995, vol. 100, pp. 11781–11800.CrossRefADSGoogle Scholar
  41. Mellon, M.T., Jakosky, B.M., Kieffer, H.H., and Christensen, P.R., High Resolution Thermal-Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus, 2000, vol. 148, pp. 437–455.CrossRefADSGoogle Scholar
  42. Mishna, M.A., Richardson, M.I., Wilson, R.J., and McCleese, D., On the Orbital Forcing of Martian Water and CO2 Cycles: A General Circulation Model Study with Simplified Volatile Schemes, J. Geophys. Res., 2003, vol. 108, p. 16–1, Cite ID 5062; DOI: 10.1029/2003JE002051.Google Scholar
  43. Mitrofanov, I., Anfimov, D., Kozyrev, A., et al., Maps of Subsurface Hydrogen from High Energy Neutron Detector, Science, 2002, vol. 297, pp. 78–81.CrossRefADSGoogle Scholar
  44. Mitrofanov, I.G., Litvak, M.L., Kozyrev, A.S., et al., Search for Water in Martian Soil Using Global Neutron Mapping by the Russian HEND Instrument Onboard the US 2001 Mars Odyssey Spacecraft, Astron. Vestn., 2003, vol. 37, no. 5, pp. 400–412 [Sol. Syst. Res. (Engl. Transl.), vol. 37, no. 5, pp. 366–377].Google Scholar
  45. Mitrofanov, I.G., Litvak, M.L., Kozyrev, A.S., et al., Soil Water Content on Mars as Estimated from Neutron Measurements by the HEND Instrument Onboard the 2001 Mars Odyssey Spacecraft, Astron. Vestn., 2004, vol. 38, no. 4, pp. 291–303 [Sol. Syst. Res. (Engl. Transl.), vol. 38, no. 4, pp. 253–265].Google Scholar
  46. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika. Teoriya turbulentnosti (Statistical Fluid Mechanics. Theory of Turbulence), St. Petersburg: Gidrometeoizdat, 1992.Google Scholar
  47. Neukum, G. and Hiller, K., Martian Ages, J. Geophys. Res., 1981, vol. 83, pp. 5455–5464.Google Scholar
  48. Newsom, H.E., Barber, C.A., Hare, T.M., et al., Paleolakes and Impact Basins in Southern Arabia, Including Meridiani Planum: Implications for the Formation of Hematite Deposits on Mars, J. Geophys. Res., Ser. E, 2003, vol. 108, no. 12, p. 8075; DOI: 10.1029/2002JE001993.CrossRefADSGoogle Scholar
  49. Pike, R.J. and Davis, P.A., Towards a Topographic Model of Martian Craters from Photoclinometry, Lunar Planet. Sci., 1984, vol. 15, pp. 645–646.ADSGoogle Scholar
  50. Renno, N.O., Nash, A.A., Lunine, J., and Murphy, J., Martian and Terrestrial Dust Devils: Test of a Scaling Theory Using Pathfinder Data, J. Geophys. Res., 2000, vol. 105, pp. 1859–1866.CrossRefADSGoogle Scholar
  51. Richardson, M.I. and Wilson, R.J., Investigation of the Nature and Stability of the Martian Seasonal Water Cycle with a General Circulation Model, J. Geophys. Res., Ser. E, 2002, vol. 107, no. 5, p. 7–1, Cite ID 5031; DOI: 10.1029/2001JE001536.Google Scholar
  52. Richardson, M.I., Wilson, R.J., and Rodin, A.V., Water Ice Clouds in the Martian Atmosphere: General Circulation Model Experiments with a Simple Cloud Scheme, J. Geophys. Res., Ser. E, 2002, vol. 107, no. 9; DOI: 10.1029/2001JE001804.Google Scholar
  53. Roache, P., Computational Fluid Dynamics, Albuquerque: Hermosa, 1972. Translated under the title Vychislitel’naya gidrodinamika, Moscow: Mir, 1980.zbMATHGoogle Scholar
  54. Rodin, A.V., On the Moment Method for the Modeling of Cloud Microsphysics in Rarefied Turbulent Atmospheres: I. Condensation and Mixing, Astron. Vestn., 2002, vol. 36, no. 2, pp. 97–106 [Sol. Syst. Res. (Engl. Transl.), vol. 36, no. 2, pp. 97–106].MathSciNetGoogle Scholar
  55. Rodin, A.V., On the Moment Method for the Modeling of Cloud Microphysics in Rarefied Turbulent Atmospheres: II. Stochastic Coagulation, Astron. Vestn., 2003, vol. 37, no. 2, pp. 101–111 [Sol. Syst. Res. (Engl. Transl.), vol. 37, no. 2, pp. 101–111].Google Scholar
  56. Roth, L.E., Saunders, R.S., and Schubert, G., Mars: Seasonally Variable Radar Reflectivity, Lunar Planet. Sci., 2002, vol. 16, pp. 712–713.ADSGoogle Scholar
  57. Schorghofer, N. and Aharonson, O., Stability and Exchange of Subsurface Ice on Mars, J. Geophys. Res., Ser. E, 2005, vol. 110, Cite ID 05003.Google Scholar
  58. Schultz, P.H. and Lutz, A.B., Polar Wandering on Mars, Icarus, 1988, vol. 73, pp. 91–141.CrossRefADSGoogle Scholar
  59. Scott, D.H. and Carr, M.H., Geologic Map of Mars, Atlas of Mars, Map I-1083, USGS, 1978.Google Scholar
  60. Scott, D.H. and Tanaka, K.L., Geologic Map of the Western Equatorial Region of Mars, Atlas of Mars, Map I-1802-A, USGS, 1986.Google Scholar
  61. Shapkin, A.I. and Sidorov, Yu.I., Termodinamicheskie modeli v kosmokhimii i planetologii (Thermodynamical Models in Cosmochemistry and Planetology), Moscow: Editorial URSS, 2004.Google Scholar
  62. Smith, D.E., Zuber, M.T., Frey, H.V., et al., Mars Orbiter Laser Altimeter: Experiment Summary After the First Year of Global Mapping of Mars, J. Geophys. Res., 2001, vol. 106, pp. 23689–23722.CrossRefADSGoogle Scholar
  63. Smith, M.D., The Annual Cycle of Water Vapor on Mars As Observed by the Thermal Emission Spectrometer, J. Geophys. Res., Ser. E, 2001, vol. 107, no. 11, p. 25–1, Cite ID 5115; DOI: 10.1029/2001JE001522.Google Scholar
  64. Squyres, S.W., Arvidson, R.E., and Bell, J.F., III, et al., The Opportunity Rover Athena Science Investigation at Meridiani Planum, Mars, Science, 2004a, vol. 306, pp. 1698–1703.CrossRefADSGoogle Scholar
  65. Squyres, S.W., Grotzinger, J.P., and Aridson, R.E., et al. In Situ Evidence for An Ancient Aqueous Environment at Meridiani Planum, Mars, Science, 2004b, vol. 306, pp. 1709–1714.CrossRefADSGoogle Scholar
  66. Vaniman, D.T., Chipera, S.J., Bish, D.L., et al., Martian Relevance of Dehydration and Rehydration in the Mg-Sulfate System, Lunar Planet. Sci., 2005, vol. 36, Abstract #1486.Google Scholar
  67. Wilson, R.J. and Hamilton, K.P., Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere, J. Atmos. Sci., 1996, vol. 53, pp. 1290–1326.CrossRefADSGoogle Scholar
  68. Zent, A.P. and Quinn, R.C., Simultaneous Adsorption of CO2 and H2O Under Mars-Like Conditions and Application To the Evolution of the Martian Climate, J. Geophys. Res., 1995, vol. 100, pp. 5341–5349.CrossRefADSGoogle Scholar
  69. Zent, A.P., Howard, D.J., and Quinn, R.C., H2O Adsorption on Smectites: Application to the Diurnal variation of H2O in the Martian Atmosphere, J. Geophys. Res., 2001, vol. 106, p. 14667–14674.CrossRefADSGoogle Scholar
  70. Zisk, S.H. and Mouginis-Mark, P.J., Anomalous Region on Mars: Implications for Near-Surface Liquid Water, Nature, 1980, vol. 44, pp. 735–738.CrossRefADSGoogle Scholar
  71. Zolotov, M.Yu., Water-Bearing Minerals in the Martian Soil (Thermodynamic Prediction of Stability), Lunar Planet. Sci., 1988, vol. 20, pp. 1257–1258.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. T. Basilevsky
    • 1
  • A. V. Rodin
    • 2
  • J. Raitala
    • 3
  • G. Neukum
    • 4
  • S. Werner
    • 4
  • A. S. Kozyrev
    • 2
  • A. B. Sanin
    • 2
  • I. G. Mitrofanov
    • 2
  • J. W. Head
    • 5
  • W. Boynton
    • 6
  • R. S. Saunders
    • 7
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Astronomy DepartmentUniversity of OuluFinland
  4. 4.Institute of GeosciencesFree UniversityBerlinGermany
  5. 5.Department of Geological SciencesBrown UniversityProvidenceUSA
  6. 6.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  7. 7.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations