Advertisement

Siberian Mathematical Journal

, Volume 60, Issue 4, pp 572–584 | Cite as

The Partial Clone of Linear Formulas

  • K. DeneckeEmail author
Article
  • 3 Downloads

Abstract

A term t is linear if no variable occurs more than once in t. An identity st is said to be linear if s and t are linear terms. Identities are particular formulas. As for terms superposition operations can be defined for formulas too. We define the arbitrary linear formulas and seek for a condition for the set of all linear formulas to be closed under superposition. This will be used to define the partial superposition operations on the set of linear formulas and a partial many-sorted algebra Formclonelin(τ, τ′). This algebra has similar properties with the partial many-sorted clone of all linear terms. We extend the concept of a hypersubstitution of type τ to the linear hypersubstitutions of type (τ, τ′) for algebraic systems. The extensions of linear hypersubstitutions of type (τ, τ′) send linear formulas to linear formulas, presenting weak endomorphisms of Formclonelin(τ, τ′).

Keywords

term formula superposition linear term linear formula clone partial clone linear hypersubstitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malcev A. I., Algebraic Systems, Akademie-Verlag, Berlin (1973).CrossRefzbMATHGoogle Scholar
  2. 2.
    Denecke K. and Phusanga D., “Hyperformulas and solid algebraic systems,” Stud. Log., vol. 90, 263–268 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lawvere F. W., Functorial Semantics of Algebraic Theories: Diss., Columbia Univ., New York (1963).CrossRefzbMATHGoogle Scholar
  4. 4.
    Denecke K. and Phusanga D., “Hypersatisfaction of formulas in algebraic systems,” Discuss. Math. Gen. Algebra Appl., vol. 29, no. 2, 123–152 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Denecke K., “The partial clone of linear terms,” Sib. Math. J., vol. 57, no. 4, 589–598 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pilitowska A., “Linear identities in graph algebras,” Comment. Math. Univ. Carolin., vol. 50, 11–24 (2009).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grätzer G. and Lakser H., “Identities for globals (complex algebras) of algebras,” Colloq. Math., vol. 56, no. 1, 19–29 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Denecke K. and Wismath S. L., Hyperidentities and Clones, Gordon and Breach, New York (2000).zbMATHGoogle Scholar
  9. 9.
    Changphas Th., Denecke K., and Pibaljommee B., Linear Terms and Linear Hypersubstituions [Preprint], KhonKaen (2014).Google Scholar
  10. 10.
    Koppitz J. and Denecke K., M-Solid Varieties of Algebras, Springer-Verlag, New York (2006).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of PotsdamPotsdamGermany

Personalised recommendations