Siberian Mathematical Journal

, Volume 60, Issue 3, pp 377–388 | Cite as

On Decidability of List Structures

  • S. A. AleksandrovaEmail author
  • N. A. BazhenovEmail author


The paper studies computability-theoretic complexity of various structures that are based on the list data type. The list structure over a structure S consists of the two sorts of elements: The first sort is atoms from S, and the second sort is finite linear lists of atoms. The signature of the list structure contains the signature of S, the empty list nil, and the binary operation of appending an atom to a list. The enriched list structure over S is obtained by enriching the signature with additional functions and relations: obtaining a head of a list, getting a tail of a list, “an atom x occurs in a list Y,” and “a list X is an initial segment of a list Y.” We prove that the first-order theory of the enriched list structure over (ω, +), i.e. the monoid of naturals under addition, is computably isomorphic to the first-order arithmetic. In particular, this implies that the transformation of a structure S into the enriched list structure over S does not always preserve the decidability of first-order theories. We show that the list structure over S can be presented by a finite word automaton if and only if S is finite.


linear list list structure decidable structure automatic structure tree automatic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore D. J. and Russell B., “Axiomatic data type specifications: a first order theory of linear lists,” Acta Inf., vol. 15, no. 3, 193–207 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goncharov S. S., “A theory of lists and its models,” Vychisl. Sist., no. 114, 84–95 (1986).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Goncharov S. S. and Sviridenko D. I., “Theoretical aspects of E-programming,” in: Mathematical Methods of Specification and Synthesis of Software Systems’85, Springer-Verlag, Berlin and Heidelberg, 1986, 169–179 (Lect. Notes Comput. Sci.; V. 215).Google Scholar
  4. 4.
    Ershov Yu. L., Goncharov S. S., and Sviridenko D. I., “Semantic foundations of programming,” in: Fundamentals of Computation Theory, Springer-Verlag, Berlin and Heidelberg, 1987, 116–122 (Lect. Notes Comput. Sci.; V. 278).CrossRefGoogle Scholar
  5. 5.
    Goncharov S. S. and Sviridenko D. I., “E-programming,” Trans. Amer. Math. Soc., no. 142, 101–121 (1989).zbMATHGoogle Scholar
  6. 6.
    Barwise J., Admissible Sets and Structures, Springer-Verlag, Berlin (1975).CrossRefzbMATHGoogle Scholar
  7. 7.
    Ershov Yu. L., Definability and Computability, Consultants Bureau, New York (1996).zbMATHGoogle Scholar
  8. 8.
    Aleksandrova S. A., “The uniformization problem for E-predicates in a hereditarily finite list superstructure over the real exponential field,” Algebra and Logic, vol. 53, no. 1, 1–8 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goncharov S. S., “Conditional terms in semantic programming,” Sib. Math. J., vol. 58, no. 5, 794–800 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goncharov S. S. and Sviridenko D. I., “Recursive terms in semantic programming,” Sib. Math. J., vol. 59, no. 6, 1014–1023 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Büchi J. R., “Weak second-order arithmetic and finite automata,” Z. Math. Logik Grundlagen Math., no. 6, 66–92 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rabin M. O., “Decidability of second-order theories and automata on infinite trees,” Trans. Amer. Math. Soc., no. 141, 1–35 (1969).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Khoussainov B. and Nerode A., “Automatic presentations of structures,” in: Logic and Computational Complexity, Springer-Verlag, Berlin and Heidelberg, 1995, vol. 960, 367–392 (Lect. Notes Comput. Sci.).CrossRefGoogle Scholar
  14. 14.
    Bárány V., Grädel E., and Rubin S., “Automata-based presentations of infinite structures,” in: Finite and Algorithmic Model Theory, Cambridge Univ. Press, Cambridge, 2011, vol. 379, 1–76 (Lond. Math. Soc. Lect. Note Ser.).Google Scholar
  15. 15.
    Khoussainov B. and Minnes M., “Three lectures on automatic structures,” in: Logic Colloquium 2007, Cambridge Univ. Press, Cambridge, 2010, vol. 35, 132–176 (Lect. Notes Logic).CrossRefGoogle Scholar
  16. 16.
    Khoussainov B. and Nerode A., “Open questions in the theory of automatic structures,” Bull. Eur. Assoc. Theor. Comput. Sci. EATCS, no. 94, 181–204 (2008).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rubin S., “Automata presenting structures: a survey of the finite string case,” Bull. Symb. Log., vol. 14, no. 2, 169–209 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Blumensath A., Automatic Structures: Diploma Thesis, RWTH, Aachen (1999).Google Scholar
  19. 19.
    Bazhenov N. A., “Automatic structures and the theory of lists,” Sib. Elektron. Math. Reports, no. 12, 714–722 (2015).MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ash C. J. and Knight J. F., Computable structures and the hyperarithmetical hierarchy, Elsevier Sci. B. V., Amsterdam (2000 (Stud. Logic Found. Math.; V. 144)).zbMATHGoogle Scholar
  21. 21.
    Semenov A. L., “Decidability of monadic theories,” in: Mathematical Foundations of Computer Science 1984. Lect. Notes Comput. Sci., Springer-Verlag, Berlin, 1984, vol. 176, 162–175.CrossRefGoogle Scholar
  22. 22.
    Walukiewicz I., “Monadic second order logic on tree-like structures,” Theor. Comput. Sci., vol. 275, no. 1–2, 311–346 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kuske D. and Lohrey M., “Monadic chain logic over iterations and applications to push-down systems,” in: 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), IEEE Computer Society, Los Alamitos, 2006, 91–100.CrossRefGoogle Scholar
  24. 24.
    Kuske D. and Lohrey M., “Logical aspects of Cayley-graphs: The monoid case,” Int. J. Algebra Comput., vol. 16, no. 2, 307–340 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hopcroft J. E., Motwani R., and Ullman J. D., Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Boston (2000).zbMATHGoogle Scholar
  26. 26.
    Cenzer D., Harizanov V., and Remmel J. B., “Σ1 0 and Π1 0 equivalence structures,” Ann. Pure Appl. Logic, vol. 162, no. 7, 490–503 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rogers Jr. H., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).zbMATHGoogle Scholar
  28. 28.
    Colcombet T., “Equational presentations of tree-automatic structures,” in: Workshop on Automata, Structures and Logic, Auckland, 2004.Google Scholar
  29. 29.
    Khoussainov B., Rubin S., Stephan F., “Definability and regularity in automatic structures,” in: STACS 2004. Lect. Notes Comput. Sci., Springer-Verlag, Berlin, 2004, vol. 2996, 440–451.CrossRefGoogle Scholar
  30. 30.
    Delhommé C., “Automacité des ordinaux et des graphes homogènes,” C. R. Math. Acad. Sci. Paris, vol. 339, no. 1, 5–10 (2004).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations