Advertisement

Siberian Mathematical Journal

, Volume 60, Issue 1, pp 56–61 | Cite as

On the Characterization of the Core of a π-Prefrattini Subgroup of a Finite Soluble Group

  • X. YiEmail author
  • S. F. KamornikovEmail author
  • L. XiaoEmail author
Article
  • 3 Downloads

Abstract

Let π be a set of primes and let H be a π-prefrattini subgroup of a finite soluble group G. We prove that there exist elements x, y, zG such that HHxHyHz = Φπ(G).

Keywords

finite group soluble group π-prefrattini subgroup Hall subgroup Frattini subgroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballester–Bolinches A., Cossey J., Kamornikov S. F., and Meng H., “On two questions from the Kourovka Notebook,” J. Algebra, vol. 499, 438–449 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kamornikov S. F., “Intersections of prefrattini subgroups in finite soluble groups,” Int. J. Group Theory, vol. 6, No. 2, 1–5 (2017).MathSciNetGoogle Scholar
  3. 3.
    Kamornikov S. F., “A characterization of the Gaschütz subgroup of a finite soluble group,” J. Math. Sci. (New York), vol. 233, No. 1, 42–49 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Passman D. S., “Groups with normal solvable Hall p–subgroups,” Trans. Amer. Math. Soc., vol. 123, No. 1, 99–111 (1966).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Zenkov V. I., “Intersections of nilpotent subgroups in finite groups,” Fundam. Prikl. Mat., vol. 2, No. 1, 1–92 (1996).MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dolfi S., “Intersections of odd order Hall subgroups,” Bull. London Math. Soc., vol. 37, No. 1, 61–66 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dolfi S., “Large orbits in coprime actions of solvable groups,” Trans. Amer. Math. Soc., vol. 360, No. 1, 135–152 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Vdovin E. P., “Regular orbits of solvable linear p–groups,” Sib. Elektron. Mat. Izv., vol. 4, 345–360 (2007).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Doerk K. and Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin and New York (1992).CrossRefzbMATHGoogle Scholar
  10. 10.
    Gaschütz W., “Praefrattinigruppen,” Arch. Math., vol. 13, No. 3, 418–426 (1962).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hawkes T. O., “Analogues of prefrattini subgroups,” in: Proc. Intern. Conf. Theory of Groups (Austral. Nat. Univ., Canberra, 1965), New York, 1967, 145–150.zbMATHGoogle Scholar
  12. 12.
    Kurzweil H., “Die Praefrattinigruppe im Intervall eines Untergruppenverbandes,” Arch. Math., Bd 53, 235–244 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shemetkov L. A. and Skiba A. N., Formations of Algebraic Systems [Russian], Nauka, Moscow (1989).zbMATHGoogle Scholar
  14. 14.
    Kamornikov S. F., “On the prefrattini subgroups of finite soluble groups,” Sib. Math. J., vol. 49, No. 6, 1044–1050 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kamornikov S. F. and Shemetkov L. A., “Projectors of finite soluble groups: Reduction to subgroups of prefrattini type,” Dokl. Math., vol. 84, No. 2, 645–648 (2011).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Sci-Tech UniversityHangzhouP. R. China
  2. 2.F. Skorina Gomel State UniversityGomelBelarus

Personalised recommendations