Siberian Mathematical Journal

, Volume 59, Issue 6, pp 1125–1132 | Cite as

A Lower Bound for the Crossing Number of Links in Thickened Surfaces

  • V. V. Tarkaev


We introduce the notion of homological multiplicity for an oriented link in a thickened orientable closed surface. Using the notion, we establish some lower bounds for the crossing number of a link in thickened surfaces.


thickened surface knot link crossing number homological multiplicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turaev V. G., “Skein quantization of Poisson algebras of loops on surfaces,” Ann. Sci. École Norm. Sup. (4), vol. 24, No. 6, 635–704 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cotta-Ramusino P. and Rinaldi M., “On the algebraic structure of link-diagrams on a 2-dimensional surface,” Commun. Math. Phys., vol. 138, No. 1, 137–173 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fiedler T., Gauss Diagram Invariants for Knots and Links, Kluwer Acad. Publ., Dordrecht (2001).CrossRefzbMATHGoogle Scholar
  4. 4.
    Kauffman L. H., “Virtual knot theory,” European J. Combin., vol. 20, No. 7, 663–690 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kuperberg G., “What is a virtual link?” Algebr. Geom. Topol., vol. 3, 587–591 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Manturov V. O., Knot Theory, Chapman and Hall/CRC, Boca Raton, London, New York, and Washington (2004).Google Scholar
  7. 7.
    Dye H. A. and Kauffman L. H., “Minimal surface representations of virtual knots and links,” Algebr. Geom. Topol., vol. 5, 509–535 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Manturov V. O. and Nikonov I. M., “Homotopical Khovanov homology,” J. Knot Theory Ramifications, vol. 24, No. 13, 1541003 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Turaev V., “Virtual strings,” Ann. Inst. Fourier (Grenoble), vol. 54, No. 7, 2455–2525 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Turaev V., “Cobordism of knots on surfaces,” J. Topol., vol. 1, No. 2, 285–305 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Adams C., Fleming T., Levin M., and Turner A. M., “Crossing number of alternating knots in S ×I,” Pacific J. Math., vol. 203, No. 1, 1–22 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Akimova A. A. and Matveev S. V., “Classification of genus 1 virtual knots having at most five classical crossings,” J. Knot Theory Ramifications, vol. 23, No. 6, 1450031 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Akimova A. A., Matveev S. V., and Tarkaev V. V., “Classification of links of small complexity in a thickened torus,” Trudy Inst. Mat. i Mekh. UrO RAN, vol. 23, No. 4, 18–31 (2017).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boden H. U., Gaudreau R., Harper E., Nicas A. J., and White L., “Virtual knot groups and almost classical knots,” Fund. Math., vol. 238, No. 2, 101–142 (2017).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chelyabinsk State UniversityChelyabinskRussia
  2. 2.Institute of Mathematics and MechanicsEkaterinburgRussia

Personalised recommendations