Siberian Mathematical Journal

, Volume 59, Issue 6, pp 1073–1089 | Cite as

On Solvability of an Initial-Boundary Value Problem for a Viscoelasticity Model with Fractional Derivatives

  • V. G. ZvyaginEmail author
  • V. P. Orlov


We establish the existence and uniqueness (the latter only in the plane case) of a weak solution to an initial-boundary value problem for the system of the equations of motion of a viscoelastic fluid, namely, for the anti-Zener model whose constitutive law contains fractional derivatives. We use the approximation of this problem by a sequence of regularized Navier–Stokes systems and passage to the limit.


viscoelastic medium equation of motion initial-boundary value problem weak solution anti-Zener model fractional derivative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gyarmati I., Non-Equilibrium Thermodynamics: Field Theory and Variational Principles, Springer-Verlag, Berlin and Heidelberg (1970).CrossRefGoogle Scholar
  2. 2.
    Mainardi F. and Spada G., “Creep, relaxation and viscosity properties for basic fractional models in rheology,” Eur. Phys. J. Special Topics, vol. 193, No. 1, 133–160 (2011).CrossRefGoogle Scholar
  3. 3.
    Ogorodnikov E. N., Radchenko V. P., and Yashagin N. S., “Rheological model of viscoelastic body with memory and differential equations of fractional oscillators,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, vol. 22, No. 1, 255–268 (2011).CrossRefGoogle Scholar
  4. 4.
    Zvyagin V. G., “On solvability of some initial-boundary problems for mathematical models of the motion of nonlinearly viscous and viscoelastic fluids,” J. Math. Sci., vol. 124, No. 5, 5321–5334 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zvyagin V. G. and Turbin M. V., Mathematical Problems for Hydrodynamic Viscoelastic Media [Russian], Krassand (URSS), Moscow (2012).Google Scholar
  6. 6.
    Orlov V. P., Rode D. A., and Pliev M. A., “Weak solvability of the generalized Voigt viscoelasticity model,” Sib. Math. J., vol. 58, No. 5, 859–874 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zvyagin V. G. and Orlov V. P., “Weak solvability of a fractional Voigt viscoelasticity model,” Dokl. Math., vol. 96, No. 2, 491–493 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Temam R., Navier–Stokes Equations. Theory and Numerical Analysis, Amer. Math. Soc., Providence (2001).Google Scholar
  9. 9.
    Samko S. G., Kilbas A. A., and Marichev O. M., Integrals and Fractional-Order Derivatives and Some of Their Applications, Gordon and Breach, Amsterdam (1993).zbMATHGoogle Scholar
  10. 10.
    Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., and Sobolevskii P. E., Integral Operators in Spaces of Summable Functions, Noordhoff Int. Publ., Leyden (1976).CrossRefGoogle Scholar
  11. 11.
    Ashyralyev A., “A note on fractional derivatives and fractional powers of operators,” J. Math. Anal. Appl., vol. 357, 232–236 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zvyagin V. G. and Dmitrienko V. T., “On weak solutions of a regularized model of a viscoelastic fluid,” Differ. Equ., vol. 38, No. 12, 1731–1744 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zvyagin V. G. and Dmitrienko V. T., Topological Approximation Approach to the Study of the Problems of Hydrodynamics. A Navier–Stokes System [Russian], Èditorial URSS, Moscow (2004).Google Scholar
  14. 14.
    Orlov V. P. and Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory,” Differ. Integral Equ., vol. 4, No. 1, 103–115 (1991).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Yosida K., Functional Analysis, Springer-Verlag, Berlin (1994).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Research Institute of MathematicsVoronezh State UniversityVoronezhRussia

Personalised recommendations