Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 6, pp 1063–1072 | Cite as

The Fixed Points of Contractions of f-Quasimetric Spaces

  • E. S. ZhukovskiyEmail author
Article

Abstract

The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.

Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.

Keywords

f-quasimetric asymptotic triangle inequality fixed point generalized contraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fund. Math., vol. 3, 133–181 (1922).CrossRefzbMATHGoogle Scholar
  2. 2.
    Granas A. and Dugundji J., Fixed Point Theory, Springer-Verlag, New York (2003) (Springer Monogr. Math.).CrossRefzbMATHGoogle Scholar
  3. 3.
    Browder F. E., “On the convergence of successive approximations for nonlinear functional equations,” Nederl. Akad. Wetensch. Proc. Ser. A., vol. 71, 27–35 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Krasnoselskii M. A. et al., Approximate Solution of Operator Equations, Wolters-Noordhoff Publ., Groningen (1972).CrossRefGoogle Scholar
  5. 5.
    Jachymski J., “Around Browder’s fixed point theorem for contractions,” J. Fixed Point Theory Appl., vol. 5, No. 5, 47–61 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arutyunov A. V., Greshnov A. V., Lokoutsievskii L. V., and Storozhuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics,” Topology Appl., vol. 221, 178–194 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fréchet M., “Sur quelques points du calcul fonctionnel,” Rendiconti del Circolo Matematico di Palermo, 1906, vol. 22.Google Scholar
  8. 8.
    Pitcher A. D. and Chittenden E. W., “On the foundations of the calcul fonctionnel of Fréchet,” Trans. Amer. Math. Soc., vol. 19, No. 1, 66–78 (1918).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Arutyunov A. V. and Greshnov A. V., “Theory of (q1, q2)-quasimetric spaces and coincidence points,” Dokl. Math., vol. 94, No. 1, 434–437 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Arutyunov A. V. and Greshnov A. V., “Coincidence points of multivalued mappings in (q1, q2)-quasimetric spaces,” Dokl. Math., vol. 96, No. 2, 438–441 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Arutyunov A. V. and Greshnov A. V., “(q1, q2)-Quasimetric spaces. Covering mappings and coincidence points,” Izv. Math., vol. 82, No. 2, 245–272 (2018).Google Scholar
  12. 12.
    Bakhtin I. A., “The contraction mapping principle in almost metric spaces,” in: Functional Analysis [Russian], Ulyanovsk. Ped. Inst. im. I. N. Ulyanova, Ulyanovsk, 1989, vol. 30, 26–37.Google Scholar
  13. 13.
    Heinonen J., Lectures on Analysis on Metric Spaces, Springer-Verlag, New York (2001).CrossRefzbMATHGoogle Scholar
  14. 14.
    Choban M. M. and Berinde V., “Two open problems in the fixed point theory of contractive type mappings on firstcountable quasimetric spaces,” arXiv.org. 2016. arXiv:1701.00519.zbMATHGoogle Scholar
  15. 15.
    Doitchinov D., “On completeness in quasi-metric spaces,” Topology Appl., vol. 30, No. 2, 127–148 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Perov A. I., “Multidimensional version of M. A. Krasnoselskii’s generalized contraction principle,” Funct. Anal. Appl., vol. 44, No. 1, 69–72 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhukovskiy E. S. and Panasenko E. A., “On fixed points of multivalued mappings in spaces with a vector-valued metric,” Trudy Inst. Mat. i Mekh. UrO RAN, vol. 24, No. 1, 93–105 (2018).Google Scholar
  18. 18.
    Zhukovskiy E. S., “On coincidence points for vector mappings,” Russian Math. (Iz. VUZ), vol. 60, No. 9, 66–68 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhukovskiy E. S., “On coincidence points of multivalued vector mappings of metric spaces,” Math. Notes, vol. 100, No. 3, 363–379 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Arutyunov A. V. and Zhukovskiy S. E., “Coincidence points of mappings in vector-metric spaces with applications to differential equations and control systems,” Differ. Equ., vol. 53, No. 11, 1440–1448 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Avakov E. R., Arutyunov A. V., and Zhukovskii E. S., “Covering mappings and their applications to differential equations unsolved for the derivative,” Differ. Equ., vol. 45, No. 5, 627–649 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Panthi D., Jha K., and Porru G., “A fixed point theorem in dislocated quasi-metric spaces,” Amer. J. Math. Statistics, vol. 3, No. 3, 153–156 (2013).MathSciNetGoogle Scholar
  23. 23.
    Zhukovskaya T. V. and Zhukovskiy E. S., “About one quasi-metric space,” Tambov University Reports. Series: Natural and Technical Sciences, vol. 22, No. 6, 1285–1292 (2017).CrossRefGoogle Scholar
  24. 24.
    Sengupta R., “On fixed points of contraction maps acting in (q1; q2)-quasimetric spaces and geometric properties of these spaces,” Eurasian Math. J., vol. 8, No. 3, 70–76 (2017).MathSciNetGoogle Scholar
  25. 25.
    Wardowski D., “Fixed points of a new type of contractive mappings in complete metric spaces,” Fixed Point Theory Appl., vol. 94, 1–6 (2012).MathSciNetzbMATHGoogle Scholar
  26. 26.
    Natanson I. P., Theory of Functions of Real Variable, Ungar, New York (1955).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tambov State University named after G. R. DerzhavinTambovRussia

Personalised recommendations