Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 6, pp 1051–1062 | Cite as

Structure of some Unital Simple Jordan Superalgebras with Associative Even Part

  • V. N. ZhelyabinEmail author
Article
  • 11 Downloads

Abstract

Studying the unital simple Jordan superalgebras with associative even part, we describe the unital simple Jordan superalgebras such that every pair of even elements induces the zero derivation and every pair of two odd elements induces the zero derivation of the even part. We show that such a superalgebra is either a superalgebra of nondegenerate bilinear form over a field or a four-dimensional simple Jordan superalgebra.

Keywords

Jordan superalgebra Grassmann superalgebra superalgebra of bilinear form derivation associative commutative algebra composition algebra superalgebra of vector type differential algebra projective module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shestakov I. P., “Simple superalgebras of the kind (−1, 1),” Algebra and Logic, vol. 37, No. 6, 411–422 (1998).MathSciNetGoogle Scholar
  2. 2.
    Pchelintsev S. V. and Shashkov O. V., “Simple finite-dimensional right-alternative superalgebras of Abelian type of characteristic zero,” Izv. Math., vol. 79, No. 3, 554–580 (2015).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kantor I. L., “Jordan and Lie superalgebras defined by Poisson algebras,” J. Amer. Math. Soc., vol. 151, 55–80 (1992).zbMATHGoogle Scholar
  4. 4.
    King D. and McCrimmon K., “The Kantor construction of Jordan superalgebras,” Comm. Algebra, vol. 20, No. 1, 109–126 (1992).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Shestakov I. P., “Superalgebras and counterexamples,” Sib. Math. J., vol. 32, No. 6, 1052–1060 (1991).MathSciNetzbMATHGoogle Scholar
  6. 6.
    McCrimmon K., “Speciality and nonspeciality of two Jordan superalgebras,” J. Algebra, vol. 149, No. 2, 326–351 (1992).MathSciNetzbMATHGoogle Scholar
  7. 7.
    King D. and McCrimmon K., “The Kantor doubling process revisited,” Comm. Algebra, vol. 23, No. 1, 357–372 (1995).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Medvedev Yu. A. and Zelmanov E. I., “Some counterexamples in the theory of Jordan algebras,” in: Nonassociative Algebraic Models, Commack Nova Sci. Publ., New York, 1992, 1–16.Google Scholar
  9. 9.
    Skosyrskii V. G., “Prime Jordan algebras and the Kantor construction,” Algebra and Logic, vol. 33, No. 3, 169–179 (1994).MathSciNetGoogle Scholar
  10. 10.
    Shestakov I. P., “Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras,” Algebra and Logic, vol. 32, No. 5, 309–317 (1993).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Shestakov I. P., “Quantization of Poisson algebras and weak speciality of related Jordan superalgebras,” Dokl. Akad. Nauk, vol. 334, No. 1, 29–31 (1994).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mrtinez C., Shestakov I., and Zelmanov E., “Jordan superalgebras defined by brackets,” J. London Math. Soc. II, vol. 64, No. 2, 357–368 (2001).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zhelyabin V. N. and Zakharov A. S., “Speciality of Jordan superalgebras related to Novikov–Poisson algebras,” Math. Notes, vol. 97, No. 3, 341–348 (2015).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Pchelintsev S. V. and Shestakov I. P., “Prime (−1, 1)- and Jordan monsters and superalgebras of vector type,” J. Algebra, vol. 423, No. 1, 54–86 (2015).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zhelyabin V. N., “Simple special Jordan superalgebras with associative nil-semisimple even part,” Algebra and Logic, vol. 41, No. 3, 152–172 (2002).MathSciNetzbMATHGoogle Scholar
  16. 16.
    Zhelyabin V. N. and Shestakov I. P., “Simple special Jordan superalgebras with associative even part,” Sib. Math. J., vol. 45, No. 5, 860–882 (2004).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zhelyabin V. N., “Differential algebras and simple Jordan superalgebras,” Sib. Adv. Math., vol. 20, No. 3, 223–230 (2010).Google Scholar
  18. 18.
    Zhelyabin V. N., “New examples of simple Jordan superalgebras over an arbitrary field of characteristic zero,” St. Petersburg Math. J., vol. 24, No. 4, 591–600 (2013).MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cantarini N., and Kac V. G., “Classification of linearly compact simple Jordan and generalized Poisson superalgebras,” J. Algebra, vol. 313, No. 1, 100–124 (2007).MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhelyabin V. N., “Examples of prime Jordan superalgebras of vector type and superalgebras of Cheng–Kac type,” Sib. Math. J., vol. 54, No. 1, 33–39 (2013).MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhelyabin V. N., “Simple Jordan superalgebras with associative nil-semisimple even part,” Sib. Math. J., vol. 57, No. 6, 987–1001 (2016).MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kac V., “Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras,” Comm. Algebra, vol. 5, 1375–1400 (1977).MathSciNetzbMATHGoogle Scholar
  23. 23.
    Shestakov I. P., “Prime alternative superalgebras of an arbitrary characteristic,” Algebra and Logic, vol. 36, No. 6, 701–731 (1997).MathSciNetGoogle Scholar
  24. 24.
    Martinez C. and Zelmanov E., “Simple finite-dimensional Jordan superalgebras of prime characteristic,” J. Algebra, vol. 236, No. 2, 575–629 (2001).MathSciNetzbMATHGoogle Scholar
  25. 25.
    Racine M. and Zelmanov E., “Simple Jordan superalgebras with semisimple even part,” J. Algebra, vol. 270, No. 2, 374–444 (2003).MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kac V. G., Martinez C., and Zelmanov E., Graded Simple Jordan Superalgebras of Growth One, Amer. Math. Soc., Providence (2001) (Mem. Amer. Math. Soc., vol. 150, no. 711).zbMATHGoogle Scholar
  27. 27.
    Pchelintsev S. V. and Shashkov O. V., “Simple right alternative superalgebras of Abelian type whose even part is a field,” Izv. Math., vol. 80, No. 6, 1231–1241 (2016).MathSciNetzbMATHGoogle Scholar
  28. 28.
    Silva J. P., Murakami L. S. I., and Shestakov I., “On right alternative superalgebras,” Comm. Algebra, vol. 44, No. 1, 240–252 (2016).MathSciNetzbMATHGoogle Scholar
  29. 29.
    Pchelintsev S. V. and Shashkov O. V., “Simple 5-dimensional right alternative superalgebras with trivial even part,” Sib. Math. J., vol. 58, No. 6, 1078–1089 (2017).MathSciNetzbMATHGoogle Scholar
  30. 30.
    Pchelintsev S. V. and Shashkov O. V., “Simple finite-dimensional right-alternative superalgebras with semisimple strongly associative even part,” Sb. Math., vol. 208, No. 2, 223–236 (2017).MathSciNetzbMATHGoogle Scholar
  31. 31.
    Pchelintsev S. V. and Shashkov O. V., “Simple finite-dimensional right-alternative unital superalgebras with strongly associative even part,” Sb. Math., vol. 208, No. 4, 531–545 (2017).MathSciNetzbMATHGoogle Scholar
  32. 32.
    Pchelintsev S. V. and Shashkov O. V., “Singular 6-dimensional superalgebras,” Sib. Èlektron. Mat. Izv., vol. 15, 92–105 (2018).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations