Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 6, pp 1014–1023 | Cite as

Recursive Terms in Semantic Programming

  • S. S. GoncharovEmail author
  • D. I. Sviridenko
Article

Abstract

For constructing an enrichment of a language with restricted quantifiers, we extend the notion of term by the construction of the terms conditional and recursive with respect to lists. We show that the so-obtained extension of the language of formulas with restricted quantifiers over structures with hereditary finite lists is a conservative enrichment and the new terms are Δ-definable in the basic language.

Keywords

formula term restricted quantifier Δ0-formula Δ-formula Σ-formula semantic programming computability computability over abstract structures conditional term recursive term model hereditary finite list hereditary finite set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov S. S., “Conditional terms in semantic programming,” Sib. Math. J., vol. 58, No. 5, 794–800 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goncharov S. S. and Sviridenko D. I., “Σ-Programming,” Trans. Amer. Math. Soc., no. 142, 101–121 (1989).zbMATHGoogle Scholar
  3. 3.
    Goncharov S. S. and Sviridenko D. I., “Σ-Programming and their semantics,” Vychisl. Systemy, no. 120, 24–51 (1987).zbMATHGoogle Scholar
  4. 4.
    Goncharov S. S. and Sviridenko D. I., “Theoretical aspects of Σ-programming,” Lect. Notes Comput. Sci., vol. 215, 169–179 (1986).CrossRefGoogle Scholar
  5. 5.
    Ershov Yu. L., Goncharov S. S., and Sviridenko D. I., “Semantic programming,” in: Information Processing 86. Proc. IFIP 10th World Comput. Congress, Dublin, 1986, vol. 31, 1113–1120.zbMATHGoogle Scholar
  6. 6.
    Goncharov S. S. and Sviridenko D. I., “Mathematical bases of semantic programming,” Soviet Math. Dokl., vol. 31, No. 6, 608–610 (1986).zbMATHGoogle Scholar
  7. 7.
    Ershov Yu. L., Goncharov S. S., and Sviridenko D. I., “Semantic foundations of programming,” Lect. Notes Comput. Sci., vol. 278, 116–122 (1987).CrossRefzbMATHGoogle Scholar
  8. 8.
    Ershov Yu. L., “The principle of Σ-enumeration,” Soviet Math. Dokl., vol. 27, No. 4, 670–672 (1983).zbMATHGoogle Scholar
  9. 9.
    Ershov Yu. L., “Dynamic logic over admissible sets,” Soviet Math. Dokl., vol. 28, No. 5, 739–742 (1983).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ershov Yu. L., Definability and Computability, Consultants Bureau, New York and London (1996).zbMATHGoogle Scholar
  11. 11.
    Goncharov S. S., “The theory of lists, and its models,” Vychisl. Systemy, no. 114, 84–95 (1986).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Goncharov S. S., “Data models and languages for their description,” Trans. Amer. Math. Soc., no. 143, 139–152 (1989).zbMATHGoogle Scholar
  13. 13.
    Ershov Yu. L., Goncharov S. S., Nerode A., and Remmel J., Introduction to the Handbook of Recursive Mathematics. Vol. 138, Elsevier, Amsterdam (1998).zbMATHGoogle Scholar
  14. 14.
    Ershov Yu. L., Puzarenko V. G., and Stukachev A. I., “HF-computability,” in: Computability in Context, Imperial College Press, London, 2011, 169–242.CrossRefGoogle Scholar
  15. 15.
    Morozov A. S. and Puzarenko V. G., “Σ-subsets of natural numbers,” Algebra and Logic, vol. 43, No. 3, 162–178 (2004).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ospichev S. and Ponomarev D., “A note on the complexity of formulas in semantic programming,” Sib. Elektron. Mat. Izv., 2018, vol. 15, 987–995.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations