Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 6, pp 960–982 | Cite as

Local Solvability of the Problem of the Van Der Waals Gas Flow Around an Infinite Plane Wedge in the Case of a Weak Shock Wave

  • A. M. Blokhin
  • D. L. Tkachev
  • A. V. Yegitov
Article
  • 6 Downloads

Abstract

Studying the problem of a stationary supersonic van der Waals gas flow around an infinite plane wedge, we prove the local-in-time well-posedness of the generalized statement of the problem.

Keywords

van der Waals gas flow around an infinite plane wedge weak shock wave nonstationary problem local-in-time well-posedness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Courant R. and Friedrichs K. O., Supersonic Flow and Shock Waves, Interscience Publ. Inc., New York (1948).zbMATHGoogle Scholar
  2. 2.
    Ovsyannikov L. V., Lectures on the Fundamentals of Gas Dynamics [Russian], Inst. Kompyuternykh Issledovanii, Moscow and Izhevsk (2003).Google Scholar
  3. 3.
    Chernyi G. G., Gas Dynamics [Russian], Nauka, Moscow (1988).Google Scholar
  4. 4.
    Blokhin A. M., Bychkov A. S., and Myakishev V. O., “Numerical analysis of feasibility of the neutral stability conditions for shock waves in the problem of a van der Waals gas flow past a wedge,” J. Appl. Indust. Math., vol. 7, No. 2, 131–141 (2013).CrossRefzbMATHGoogle Scholar
  5. 5.
    Blokhin A. M. and Tkachev D. L., “Feasibility analysis of neutral stability for shock waves in a nonideal gas flow about a wedge,” Techn. Phys., vol. 60, No. 7, 964–974 (2015).CrossRefGoogle Scholar
  6. 6.
    Blokhin A. M. and Tkachev D. L., “Stability of a supersonic flow about a wedge with weak shock wave,” Sb. Math., vol. 200, No. 2, 157–184 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Blokhin A. M., Tkachev D. L., and Baldan L. O., “Study of the stability in the problem on flowing around a wedge. The case of strong wave,” J. Math. Anal. Appl., vol. 319, No. 1, 248–277 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blokhin A. M., Tkachev D. L., and Pashinin Yu. Yu., “Stability condition for strong shock waves in the problem of flow around an infinite plane wedge,” Nonlinear Anal. Hybrid Syst., vol. 2, No. 1, 1–17 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blokhin A.M., Tkachev D. L., and Pashinin Yu. Yu., “The strong shock wave in the problem on flow around infinite plane wedge,” in: Hyperbolic Problems. Theory, Numerics, Applications: Proc. 11th Intern. Conf. on Hyperbolic Problems (Ecole Normale Superieure, Lyon, France, 2006), Springer-Verlag, Berlin, 2008, 1037–1044.Google Scholar
  10. 10.
    Tkachev D. L. and Blokhin A. M., “Courant–Friedrichs hypothesis and stability of the weak shock,” in: Hyperbolic Problems. Theory, Numerics, Applications: Proc. 12th Intern. Conf. on Hyperbolic Problems (Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, 2008), Amer. Math Soc., Providence, 2009, vol. 67, 958–966.Google Scholar
  11. 11.
    Blokhin A. and Tkachev D., Justification of the Courant–Friedrichs Conjecture for the Problem About Flow Around Wedge, Nova Sci. Publ. Inc., New York (2013).Google Scholar
  12. 12.
    Blokhin A. M. and Tkachev D. L., “Stability of a supersonic flow over a wedge containing a weak shock wave satisfying the Lopatinski condition,” J. Hyperbolic Differ. Equ., vol. 11, No. 2, 215–248 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Blokhin A. M. and Tkachev D. L., “Stability condition for strong shocks in flows over an infinite planar wedge satisfying the Lopatinski condition,” J. Hyperbolic Differ. Equ., vol. 12, No. 4, 817–847 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kraiko A. N., Pyankov K. S., and Yakovlev Ye. A., “The flow of a supersonic ideal gas with ‘weak’ and ‘strong’ shocks over a wedge,” J. Appl. Math. Mech., vol. 78, No. 4, 318–330 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Salas M. D. and Morgan B. D., “On the stability of shock waves attached to wedges and cones,” AIAA J., vol. 82, No. 0288, 10 (1982).Google Scholar
  16. 16.
    Salas M. D. and Morgan B. D., “Stability of shock waves attached to wedges and cones,” AIAA J., vol. 21, No. 12, 1611–1617 (1983).CrossRefzbMATHGoogle Scholar
  17. 17.
    Elling V. and Liu T.-P., “Physicality of weak Prandtl–Meyer reflection,” RIMS Kokyuroku, vol. 1495, 112–117 (2006).Google Scholar
  18. 18.
    Elling V. and Liu T.-P., “Exact solutions to supersonic flow onto a solid wedge,” in: Hyperbolic Problems. Theory, Numerics, Applications: Proc. 11th Intern. Conf. on Hyperbolic Problems (École Normale Superieure, Lyon, France, 2006), Springer-Verlag, Berlin, 2008, 101–112.Google Scholar
  19. 19.
    Elling V. and Liu T.-P., “Supersonic flow onto a solid wedge,” Comm. Pure Appl. Math., vol. 61, No. 10, 1347–1448 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pai Shih-I, Introduction to the Theory of Compressible Flow, D. Van Nostrand Co., Princeton (1959).zbMATHGoogle Scholar
  21. 21.
    Ter Haar D. and Wergeland H., Elements of Thermodynamics, Reading, Addison-Wesley (1960).Google Scholar
  22. 22.
    Kubo R., Thermodynamics, North Holland, Amsterdam (1968).Google Scholar
  23. 23.
    Iordanskii S. V., “Stability of a plane stationary wave,” Prikl. Mat. Mekh., vol. 21, No. 4, 465–472 (1957).MathSciNetGoogle Scholar
  24. 24.
    Kreiss H.-O., “Initial boundary value problems for hyperbolic systems,” Comm. Pure Appl. Math., vol. 23, 277–296 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sakamoto R., Hyperbolic Boundary Value Problems, Iwanami Shoten, Tokyo (1978).zbMATHGoogle Scholar
  26. 26.
    Blokhin A. M., Energy Integrals and Their Applications to the Problems of Gas Dynamics [Russian], Nauka, Novosibirsk (1986).Google Scholar
  27. 27.
    Tikhonov A. N. and Samarskii A. A., Equations of Mathematical Physics, Pergamon Press, Oxford etc. (1963).zbMATHGoogle Scholar
  28. 28.
    Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, Inc., New York (1971).zbMATHGoogle Scholar
  29. 29.
    Blokhin A. M. and Tkachev D. L., Mixed Problems for the Wave Equation in Coordinate Domains, Nova Sci. Publ. Inc., New York (1998).zbMATHGoogle Scholar
  30. 30.
    Cagniard L., Reflection and Refraction of Progressive Seismic Waves, McGraw-Hill Book Comp. Inc., New York (1962).zbMATHGoogle Scholar
  31. 31.
    De-Hoop A. T., “A modification of Cagniard’s method for solving seismic pulse theorems,” Appl. Sci. Res. Section B, vol. 8, 349–356 (1960).CrossRefzbMATHGoogle Scholar
  32. 32.
    Dobrushkin V. A., The Boundary Value Problems in the Dynamic Theory of Elasticity for the Wedge-Shaped Domains [Russian], Nauka i Tekhnika, Minsk (1988).zbMATHGoogle Scholar
  33. 33.
    Hórmander L., Linear Partial Differential Operators, Springer-Verlag and Acad. Press, New York, Berlin, Göttingen, and Heidelberg (1963).CrossRefGoogle Scholar
  34. 34.
    Gordienko V. M., “Un probléme mixte pour l’équation vectorielle des ondes: Cas de dissipation de l’énergie; Cas mal posés,” C. R. Math. Acad. Sci. Paris, vol. 288, 547–550 (1979).zbMATHGoogle Scholar
  35. 35.
    Godunov S. K., Equations of Mathematical Physics [Russian], Nauka, Moscow (1979).Google Scholar
  36. 36.
    Trakhinin Yu., “Dissipative symmetrizers of hyperbolic problems and their applications to shock wave and characteristic discontinuities,” SIAM J. Math. Appl., vol. 37, 1988–2024 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Banach S., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fund. Math., vol. 3, 133–181 (1922).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Blokhin
    • 1
  • D. L. Tkachev
    • 1
  • A. V. Yegitov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations