Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 5, pp 901–908 | Cite as

The Dressing Chain and One-Point Commuting Difference Operators of Rank 1

  • G. S. MauleshovaEmail author
Article
  • 15 Downloads

Abstract

We construct solutions to the difference-differential equation that are associated with onepoint commuting difference operators of rank 1 in the case of spectral curves of genus 1.

Keywords

commuting difference operators dressing chain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mauleshova G. S. and Mironov A. E., “One-point commuting difference operators of rank 1,” Dokl. Math., vol. 93, No. 1, 62–64 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mauleshova G. S. and Mironov A. E., “One-point commuting difference operators of rank one and their relation with finite-gap Schrödinger operators,” Dokl. Math., vol. 97, No. 1, 62–64 (2018).CrossRefzbMATHGoogle Scholar
  3. 3.
    Krichever I. M. and Novikov S. P., “A two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles,” Russian Math. Surveys, vol. 58, No. 3, 473–510 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Krichever I. M., “Algebraic curves and nonlinear difference equations,” Russian Math. Surveys, vol. 33, No. 4, 255–256 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations,” in: Proc. Intern. Sympos. on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya, Tokyo, 1978, 115–153.Google Scholar
  6. 6.
    Mironov A. E. and Nakayashiki A., “Discretization of Baker–Akhiezer modules and commuting difference operators in several discrete variables,” Trans. Moscow Math. Soc., vol. 74, No. 2, 261–279 (2013).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Shabat A. B., “The infinite-dimensional dressing dynamical system,” Inverse Probl., vol. 8, No. 2, 303–308 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Shabat A. B. and Yamilov R. I., “Symmetries of nonlinear chains,” Algebra i Analiz, vol. 2, No. 2, 183–208 (1990).Google Scholar
  9. 9.
    Veselov A. P. and Shabat A. B., “Dressing chains and the spectral theory of the Schrödinger operator,” Funct. Anal. Appl., vol. 27, No. 2, 81–96 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Adler V. E., Marikhin V. G., and Shabat A. B., “Lagrangian chains and canonical Backlünd transformations,” Theor. Math. Phys., vol. 129, No. 2, 1448–1465 (2001).CrossRefzbMATHGoogle Scholar
  11. 11.
    Charalampos A. “Evripidou Peter H. van der Kamp, and Cheng Zhang, Dressing the dressing chain,” SIGMA, vol. 14, 059 (2018).Google Scholar
  12. 12.
    Krichever I. M., “Two-dimensional periodic difference operators and algebraic geometry,” Dokl. Akad. Nauk SSSR, vol. 285, No. 1, 31–36 (1985).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Grushevsky S. and Krichever I. M., “Integrable discrete Schrödinger equations and a characterization of Prym varieties by a pair of quadrisecants,” Duke Math. J., vol. 152, No. 2, 317–371 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vasilevskii B. O., “The Green’s function of a five-point discretization of a two-dimensional finite-gap Schrödinger operator: The case of four singular points on the spectral curve,” Sib. Math. J., vol. 54, No. 6, 994–1004 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Doliwa A., Grinevich P., Nieszporski M., and Santini P. M., “Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy–Riemann) 4-point equation to the self-adjoint 5-point scheme,” J. Math. Phys., vol. 48, No. 1, 013513 (2007).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations