Advertisement

Siberian Mathematical Journal

, Volume 59, Issue 3, pp 536–541 | Cite as

On Splittings, Subgroups, and Theories of Partially Commutative Metabelian Groups

  • E. I. TimoshenkoEmail author
Article
  • 16 Downloads

Abstract

We consider two splittings of a partially commutative metabelian group G. The universal theories and splittings of G are compared. We prove that all nilpotent subgroups of G are abelian and give description of the Fitting subgroup of G.

Keywords

commutative group metabelian group universal theory Fitting subgroup splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapuis O., “Universal theory of certain solvable groups and bounded Ore group rings,” J. Algebra, vol. 176, no. 2, 368–391 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chapuis O., “∀-Free metabelian groups,” J. Symb. Log., vol. 62, no. 1, 159–174 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Timoshenko E. I., “Centralizer dimensions and universal theories for partially commutative metabelian groups,” Algebra and Logic, vol. 56, no. 2, 149–170 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Romanovskii N. S., “Decomposition of a group over an Abelian normal subgroup,” Algebra and Logic, vol. 55, no. 4, 315–326 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mazurov V. D. and Khukhro E. I. (eds.), The Kourovka Notebook: Unsolved Problems in Group Theory, 18th ed., Sobolev Inst. Math., Novosibirsk (2014).zbMATHGoogle Scholar
  6. 6.
    Gupta Ch. K. and Timoshenko E. I., “Partially commutative metabelian groups: centralizers and elementary equivalence,” Algebra and Logic, vol. 48, no. 3, 173–192 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Romanovskii N. S. and Timoshenko E. I., “On some elementary properties of soluble groups of derived length 2,” Sib. Math. J., vol. 44, no. 2, 350–354 (2003).CrossRefGoogle Scholar
  8. 8.
    Magnus W., “On a theorem of Marshal Hall,” Ann. Math., vol. 40, no. 4, 764–768 (1939).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blackburn N., “Note on a theorem of Magnus,” J. Aust. Math. Soc., vol. 10, no. 3–4, 469–474 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Remeslennikov V. N. and Sokolov V. G., “Some properties of a Magnus embedding,” Algebra and Logic, vol. 9, no. 5, 342–349 (1970).CrossRefzbMATHGoogle Scholar
  11. 11.
    Timoshenko E. I., “Universal equivalence of partially commutative metabelian groups,” Algebra and Logic, vol. 49, no. 2, 177–196 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kuzmin Yu. V., Homological Group Theory, Factorial Press, Moscow (2006) (Adv. Stud. Math. Mech.; vol. 1).Google Scholar
  13. 13.
    Gupta Ch. K. and Timoshenko E. I., “Universal theories for partially commutative metabelian groups,” Algebra and Logic, vol. 50, no. 1, 1–16 (2011).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Timoshenko E. I., “Quasivarieties generated by partially commutative groups,” Sib. Math. J., vol. 54, no. 4, 722–730 (2013).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations