Siberian Mathematical Journal

, Volume 58, Issue 6, pp 959–970 | Cite as

Computability of Distributive Lattices

  • N. A. BazhenovEmail author
  • A. N. Frolov
  • I. Sh. Kalimullin
  • A. G. Melnikov


The class of (not necessarily distributive) countable lattices is HKSS-universal, and it is also known that the class of countable linear orders is not universal with respect to degree spectra neither to computable categoricity. We investigate the intermediate class of distributive lattices and construct a distributive lattice with degree spectrum {d: d ≠ 0}. It is not known whether a linear order with this property exists. We show that there is a computably categorical distributive lattice that is not relatively Δ20-categorical. It is well known that no linear order can have this property. The question of the universality of countable distributive lattices remains open.


distributive lattice computable structure degree spectrum computable categoricity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knight J. F. and Stob M., “Computable Boolean algebras,” J. Symb. Log., vol. 65, no. 4, 1605–1623 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Melnikov A. G., “New degree spectra of abelian groups,” Notre Dame J. Form. Log., vol. 58, no. 4, 507–525 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hirschfeldt D. R., Khoussainov B., Shore R. A., and Slinko A. M., “Degree spectra and computable dimensions in algebraic structures,” Ann. Pure Appl. Logic, vol. 115, no. 1–3, 71–113 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fokina E. B. and Friedman S.-D., “Equivalence relations on classes of computable structures,” in: Mathematical Theory and Computational Practice, Springer-Verlag, Berlin, 2009, 198–207 (Lect. Notes Comput. Sci.; vol. 5635).CrossRefGoogle Scholar
  5. 5.
    Harrison-Trainor M., Melnikov A., Miller R., and Montalbán A., “Computable functors and effective interpretability,” J. Symb. Log., vol. 82, no. 1, 77–97 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Montalbán A., “Computability theoretic classifications for classes of structures,” in: Proc. Intern. Congr. Mathematicians (Seoul, 2014), Kyung Moon Sa Co., Seoul, 2014, vol. II, 79–101.Google Scholar
  7. 7.
    Downey R. G., “Computability theory and linear orderings,” in: Handbook of Recursive Mathematics, Elsevier, Amsterdam, 1998, vol. 2, 823–976.Google Scholar
  8. 8.
    Frolov A., Harizanov V., Kalimullin I., Kudinov O., and Miller R., “Spectra of highn and non-lown degrees,” J. Log. Comput., vol. 22, no. 4, 755–777 (2012).CrossRefzbMATHGoogle Scholar
  9. 9.
    Richter L. J., “Degrees of structures,” J. Symb. Log., vol. 46, no. 4, 723–731 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Miller R., “The Δ2 0-spectrum of a linear order,” J. Symb. Log., vol. 66, no. 2, 470–486 (2001).CrossRefGoogle Scholar
  11. 11.
    Goncharov S. S. and Dzgoev V. D., “Autostability of models,” Algebra and Logic, vol. 19, no. 1, 28–37 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Remmel J. B., “Recursively categorical linear orderings,” Proc. Amer. Math. Soc., vol. 83, no. 2, 387–391 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ash C. J., “Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees,” Trans. Amer. Math. Soc., vol. 298, no. 2, 497–514 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    McCoy C. F. D., “Δ2 0-Categoricity in Boolean algebras and linear orderings,” Ann. Pure Appl. Logic, vol. 119, no. 1–3, 85–120 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    McCoy Ch. F. D., “Partial results in Δ3 0-categoricity in linear orderings and Boolean algebras,” Algebra and Logic, vol. 41, no. 5, 295–305 (2002).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Frolov A. N., “Effective categoricity of computable linear orderings,” Algebra and Logic, vol. 54, no. 5, 415–417 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Selivanov V. L., “Algorithmic complexity of algebraic systems,” Math. Notes, vol. 44, no. 6, 944–950 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Turlington A., Computability of Heyting Algebras and Distributive Lattices, Ph. D. Thesis, Univ. of Connecticut (2010).Google Scholar
  19. 19.
    Bazhenov N. A., “Effective categoricity for distributive lattices and Heyting algebras,” Lobachevskii J. Math., vol. 38, no. 4, 600–614 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wehner S., “Enumerations, countable structures and Turing degrees,” Proc. Amer. Math. Soc., vol. 126, no. 7, 2131–2139 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Knight J. F., “Degrees coded in jumps of orderings,” J. Symb. Log., vol. 51, no. 4, 1034–1042 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Slaman T. A., “Relative to any nonrecursive set,” Proc. Amer. Math. Soc., vol. 126, no. 7, 2117–2122 (1998).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. A. Bazhenov
    • 1
    Email author
  • A. N. Frolov
    • 2
  • I. Sh. Kalimullin
    • 2
  • A. G. Melnikov
    • 3
  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazanRussia
  3. 3.Massey UniversityMasseyNew Zealand

Personalised recommendations