Siberian Mathematical Journal

, Volume 58, Issue 1, pp 72–77 | Cite as

The index set of the groups autostable relative to strong constructivizations

  • S. S. Goncharov
  • N. A. Bazhenov
  • M. I. Marchuk
Article
  • 19 Downloads

Abstract

We obtain an exact bound for the algorithmic complexity of the class of strongly constructivizable computable groups that are autostable relative to strong constructivizations.

Keywords

computable model strongly constructivizable model autostability autostability relative to strong constructivizations group 2-step nilpotent group hyperarithmetical hierarchy index set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov S. S. and Knight J. F., “Computable structure and non-structure theorems,” Algebra and Logic, vol. 41, no. 6, 351–373 (2002).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ershov Yu. L. and Goncharov S. S., Constructive Models, ser. Siberian School of Algebra and Logic, Kluwer Academic/ Plenum Publishers, New York, etc. (2000).Google Scholar
  3. 3.
    Ash C. J. and Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000) (Stud. Logic Found. Math.; V. 144).MATHGoogle Scholar
  4. 4.
    Nurtazin A. T., Computable Classes and Algebraic Criteria of Autostability [Russian], Dis. Kand. Fiz.-Mat. Nauk, Inst. Mat. Mekh., Alma-Ata (1974).Google Scholar
  5. 5.
    Nurtazin A. T., “Strong and weak constructivization and computable families,” Algebra and Logic, vol. 13, no. 3, 177–184 (1974).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Goncharov S. S., “Degrees of autostability relative to strong constructivizations,” in: Algorithmic Problems of Algebra and Logic. Vol. 274. Honoring Academician S. I. Adyan on His 80th Birthday, MAIK, Moscow, 2011, 119–129.Google Scholar
  7. 7.
    Bazhenov N. A., “Autostability spectra for Boolean algebras,” Algebra and Logic, vol. 53, no. 6, 502–505 (2014).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goncharov S. S. and Marchuk M. I., “Index sets of constructive models autostable relative to strong constructivizations,” Vestnik Novosibirsk. Univ. Ser. Mat. Mekh. Inform., vol. 13, no. 4, 43–67 (2013).MATHGoogle Scholar
  9. 9.
    Goncharov S. S. and Marchuk M. I., “Index sets of constructive models of nontrivial signature autostable relative to strong constructivizations,” Dokl. Math., vol. 91, no. 2, 158–159 (2015).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Goncharov S. S. and Marchuk M. I., “Index sets of constructive models of bounded signature that are autostable relative to strong constructivizations,” Algebra and Logic, vol. 54, no. 2, 108–126 (2015).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Goncharov S. S. and Marchuk M. I., “Index sets of constructive models of finite and graph signatures that are autostable relative to strong constructivizations,” Algebra and Logic, vol. 54, no. 6, 428–439 (2015).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Goncharov S. S., Bazhenov N. A., and Marchuk M. I., “Index sets of autostable relative to strong constructivizations constructive models for familiar classes,” Dokl. Math., vol. 92, no. 2, 525–527 (2015).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goncharov S. S., Bazhenov N. A., and Marchuk M. I., “The index set of Boolean algebras autostable relative to strong constructivizations,” Sib. Math. J., vol. 56, no. 3, 393–404 (2015).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Goncharov S. S., Bazhenov N. A., and Marchuk M. I., “The index set of linear orderings that are autostable relative to strong constructivizations,” Vestnik Novosibirsk. Univ. Ser. Mat. Mekh. Inform., vol. 15, no. 3, 51–60 (2015).MATHGoogle Scholar
  15. 15.
    Marchuk M. I., “Index set of structures with two equivalence relations that are autostable relative to strong constructivizations,” Algebra and Logic (to be published).Google Scholar
  16. 16.
    Mal’tsev A. I., “On a correspondence between rings and groups,” Mat. Sb., vol. 50, no. 3, 257–266 (1960).MathSciNetGoogle Scholar
  17. 17.
    Goncharov S. S., Molokov A. V., and Romanovskij N. S., “Nilpotent groups of finite algorithmic dimension,” Sib. Math. J., vol. 30, no. 1, 63–68 (1989).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hirschfeldt D. R., Khoussainov B., Shore R. A., and Slinko A. M., “Degree spectra and computable dimensions in algebraic structures,” Ann. Pure Appl. Logic, vol. 115, no. 1–3, 71–113 (2002).MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kargapolov M. I. and Merzlyakov Yu. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, Heidelberg, and Berlin (1979).CrossRefMATHGoogle Scholar
  20. 20.
    Ershov Yu. L. and Palyutin E. A., Mathematical Logic [Russian], Nauka, Moscow (1987).MATHGoogle Scholar
  21. 21.
    Millar T., “Recursive categoricity and persistence,” J. Symb. Log., vol. 51, no. 2, 430–434 (1986).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Downey R. G., Kach A. M., Lempp S., Lewis-Pye A. E. M., Montalbán A., and Turetsky D. D., “The complexity of computable categoricity,” Adv. Math., vol. 268, 423–466 (2015).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. S. Goncharov
    • 1
  • N. A. Bazhenov
    • 1
  • M. I. Marchuk
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations