Siberian Mathematical Journal

, Volume 57, Issue 2, pp 364–368 | Cite as

A note on a class of p-valent starlike functions of order β

  • S. K. SahooEmail author
  • N. L. Sharma


We obtain sharp coefficient bounds for some p-valent starlike functions of order β, 0 ≤ β < p. Initially this problem was handled by Aouf in [1]. We pointed out that the proof by Aouf is incorrect and present a correct proof.


p-valent analytic functions starlike functions differential subordination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aouf M. K., “On a class of p-valent starlike functions of order α,” Int. J. Math. Math. Sci., 10, No. 4, 733–744 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bieberbach L., “über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln,” S.-B. Preuss. Akad. Wiss., 138, 940–955 (1916).zbMATHGoogle Scholar
  3. 3.
    De Branges L., “A proof of the Bieberbach conjecture,” Acta Math., 154, No. 1–2, 137–152 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Duren P. L., Univalent Functions, Springer-Verlag, New York; Berlin; Heidelberg; Tokyo (1983).zbMATHGoogle Scholar
  5. 5.
    Goodman A. W., Univalent Functions. 2 vols, Mariner Publishing Co., Tampa, Florida (1983).Google Scholar
  6. 6.
    Goodman A. W., “On some determinants related to p-valent functions,” Trans. Amer. Math. Soc., 63, 175–192 (1948).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Goluzina E. G., “On the coefficients of a class of functions, regular in a disk and having an integral representation in it,” J. Soviet Math., 6, No. 2, 606–617 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Patil D. A. and Thakare N. K., “On convex hulls and extreme points of p-valent starlike and convex classes with applications,” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 27, No. 75, 145–160 (1983).MathSciNetzbMATHGoogle Scholar
  9. 9.
    Miller S. S. and Mocanu P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York; Basel (2000) (Ser. Monogr. Textb. Pure Applied Math.; V. 225).zbMATHGoogle Scholar
  10. 10.
    Robertson M. S., “On the theory of univalent functions,” Ann. Math., 37, No. 2, 374–408 (1936).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Janowski W., “Some extremal problem for certain families of analytic functions,” Ann. Polon. Math., 28, 297–326 (1973).MathSciNetzbMATHGoogle Scholar
  12. 12.
    Goel R. M. and Mehrok B. S., “On the coefficients of a subclass of starlike functions,” Indian J. Pure Appl. Math., 12, No. 5, 634–647 (1981).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Clunie J., “On meromorphic schlicht functions,” J. London Math. Soc., 34, 215–216 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rogosinski W., “On the coefficients of subordinate functions,” Proc. London Math. Soc., 48, No. 2, 48–82 (1943).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Robertson M. S., “Quasi-subordination and coefficient conjectures,” J. Bull. Amer. Math. Soc., 76, 1–9 (1970).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Indian Institute of Technology IndoreIndoreIndia

Personalised recommendations