Siberian Mathematical Journal

, Volume 56, Issue 6, pp 1009–1018 | Cite as

Recognition by spectrum for simple classical groups in characteristic 2

Article

Abstract

A finite group G is said to be recognizable by spectrum if every finite group with the same set of element orders as G is isomorphic to G. We prove that all finite simple symplectic and orthogonal groups over fields of characteristic 2, except S 4(q), S 6(2), O 8 + (2), and S 8(q), are recognizable by spectrum. This result completes the study of the recognition-by-spectrum problem for finite simple classical groups in characteristic 2.

Keywords

simple classical group element orders recognition by spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mazurov V. D., “Recognition of finite groups by a set of orders of their elements,” Algebra and Logic, 37, No. 6, 371–379 (1998).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Grechkoseeva M. A. and Vasil’ev A. V., “On the structure of finite groups isospectral to finite simple groups,” J. Group Theory, 18, No. 5, 741–759 (2015).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford (1985).MATHGoogle Scholar
  4. 4.
    Grechkoseeva M. A., “Recognition by spectrum for finite linear groups over fields of characteristic 2,” Algebra and Logic, 47, No. 4, 229–241 (2008).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Grechkoseeva M. A. and Shi W. J., “On finite groups isospectral to finite simple unitary groups over fields of characteristic 2,” Sib. Elektron. Mat. Izv., 10, 31–37 (2013).MathSciNetGoogle Scholar
  6. 6.
    Mazurov V. D., Xu M. C., and Cao H. P., “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra and Logic, 39, No. 5, 324–334 (2000).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Staroletov A. M., “On recognition by spectrum of the simple groups B 3(q), C 3(q), and D 4(q),” Siberian Math. J., 53, No. 3, 532–538 (2012).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Grechkoseeva M. A. and Staroletov A. M., “Unrecognizability by spectrum of finite simple orthogonal groups of dimension nine,” Sib. Elektron. Mat. Izv., 11, 921–928 (2014).Google Scholar
  9. 9.
    Zvezdina M. A., “Spectra of automorphic extensions of finite simple symplectic and orthogonal groups over fields of characteristic 2,” Sib. Elektron. Mat. Izv., 11, 823–832 (2014).Google Scholar
  10. 10.
    Zsigmondy K., “Zür Theorie der Potenzreste,” Monatsh. Math. Phys., 3, No. 1, 265–284 (1892).MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Roitman M., “On Zsigmondy primes,” Proc. Amer. Math. Soc., 125, No. 7, 1913–1919 (1997).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Huppert B. and Blackburn N., Finite Groups. II, Springer-Verlag, Berlin, Heidelberg, and New York (1982) (Grundlehren Math. Wiss.; V. 242).MATHCrossRefGoogle Scholar
  13. 13.
    Vasil’ev A. V., “On connection between the structure of a finite group and the properties of its prime graph,” Siberian Math. J., 46, No. 3, 396–404 (2005).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vasil’ev A. V. and Gorshkov I. B., “On recognition of finite simple groups with connected prime graph,” Siberian Math. J., 50, No. 2, 233–238 (2009).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Vasil’ev A. V. and Grechkoseeva M. A., “Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic 2,” Algebra and Logic, 47, No. 5, 314–320 (2008).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mazurov V. D., “Characterization of finite groups by sets of element orders,” Algebra and Logic, 36, No. 1, 23–32 (1997).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Shi W. and Tang C. Y., “A characterization of some orthogonal groups,” Progr. Nat. Sci., 7, No. 2, 155–162 (1997).MATHMathSciNetGoogle Scholar
  18. 18.
    Vasil’ev A. V. and Grechkoseeva M. A., “On recognition of the finite simple orthogonal groups of dimension 2m, 2m+1, and 2m + 2 over a field of characteristic 2,” Siberian Math. J., 45, No. 3, 420–432 (2004).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vasil’ev A. V., “On finite groups isospectral to simple classical groups,” J. Algebra, 423, 318–374 (2015).MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Vasil’ev A. V. and Vdovin E. P., “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, 44, No. 6, 381–406 (2005).MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zinov’eva M. R., “Recognizability by spectrum of simple groups Cp(2),” Trudy Inst. Mat. i Mekh. UrO RAN, 17, No. 4, 102–113 (2011).Google Scholar
  22. 22.
    He H. and Shi W., “Recognition of some finite simple groups of type Dn(q) by spectrum,” Int. J. Algebra Comput., 19, No. 5, 681–698 (2009).MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Alekseeva O. A. and Kondrat’ev A. S., “On recognizability of some finite simple orthogonal groups by spectrum,” Proc. Steklov Inst. Math., 266, No. 2, S10–S23 (2009).MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Kondrat’ev A. S., “On recognizability of some finite simple orthogonal groups by spectrum. II,” Vladikavkazsk. Mat. Zh., 11, No. 4, 32–43 (2009).Google Scholar
  25. 25.
    Buturlakin A. A., “Spectra of finite symplectic and orthogonal groups,” Siberian Adv. in Math., 21, No. 3, 176–210 (2011).CrossRefGoogle Scholar
  26. 26.
    Vasiliev A. V., Grechkoseeva M. A., and Mazurov V. D., “Characterization of the finite simple groups by spectrum and order,” Algebra and Logic, 48, No. 6, 385–409 (2009).MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lytkin D. V., “Large element orders and the characteristic of finite simple symplectic groups,” Siberian Math. J., 54, No. 1, 78–95 (2013).MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Vasil’ev A. V. and Staroletov A. M., “Recognizability of groups G2(q) by spectrum,” Algebra and Logic, 52, No. 1, 1–14 (2013).MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Stensholt E., “Certain embeddings among finite groups of Lie type,” J. Algebra, 53, No. 1, 136–187 (1978).MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Aschbacher M., “Chevalley groups of type G 2 as the group of a trilinear form,” J. Algebra, 109, No. 1, 193–259 (1987).MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Deriziotis D. I. and Michler G. O., “Character table and blocks of finite simple triality groups 3D4(q),” Trans. Amer. Math. Soc., 303, No. 1, 39–70 (1987).MATHMathSciNetGoogle Scholar
  32. 32.
    Deriziotis D. I. and Fakiolas A. P., “The maximal tori in the finite Chevalley groups of type E 6, E 7 and E 8,” Comm. Algebra, 19, No. 3, 889–903 (1991).MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Lawther R., “The action of F 4(q) on cosets of B 4(q),” J. Algebra, 212, No. 1, 79–118 (1999).MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Buturlakin A. A., “Spectra of finite linear and unitary groups,” Algebra and Logic, 47, No. 2, 91–99 (2008).MathSciNetCrossRefGoogle Scholar
  35. 35.
    Vasilyev A. V., “Recognizing groups G 2(3n) by their element orders,” Algebra and Logic, 41, No. 2, 74–80 (2002).MathSciNetCrossRefGoogle Scholar
  36. 36.
    He H. and Shi W., “A note on the adjacency criterion for the prime graph and characterization of C p(3),” Algebra Colloq., 19, No. 3, 553–562 (2012).MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Vasil’ev A. V. and Grechkoseeva M. A., “On recognition by spectrum of finite simple linear groups over fields of characteristic 2,” Siberian Math. J., 46, No. 4, 593–600 (2005).MathSciNetCrossRefGoogle Scholar
  38. 38.
    Vasil’ev A. V. and Vdovin E. P., “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra and Logic, 50, No. 4, 291–322 (2011).MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Vasil’ev A. V., Grechkoseeva M. A., and Mazurov V. D., “On finite groups isospectral to simple symplectic and orthogonal groups,” Siberian Math. J., 50, No. 6, 965–981 (2009).MathSciNetCrossRefGoogle Scholar
  40. 40.
    Kantor W. M. and Seress Á., “Large element orders and the characteristic of Lie-type simple groups,” J. Algebra, 322, No. 3, 802–832 (2009).MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum,” Sib. Elektron. Mat. Izv., 6, 1–12 (2009).MATHMathSciNetGoogle Scholar
  42. 42.
    Ward H. N., “On Ree’s series of simple groups,” Trans. Amer. Math. Soc., 121, No. 1, 62–89 (1966).MATHMathSciNetGoogle Scholar
  43. 43.
    Grechkoseeva M. A., “On element orders in covers of finite simple groups of Lie type,” J. Algebra Appl., 14, 1550056 (2015).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations