Siberian Mathematical Journal

, Volume 56, Issue 3, pp 393–404 | Cite as

The index set of Boolean algebras autostable relative to strong constructivizations

  • S. S. Goncharov
  • N. A. Bazhenov
  • M. I. Marchuk
Article

Abstract

We obtain exact estimates for the algorithmic complexity for the classes of strongly constructivizable computable models autostable relative to strong constructivizations and belonging to the following natural classes: Boolean algebras, distributive lattices, rings, commutative semigroups, and partial orders.

Keywords

computable model strongly constructivizable model autostability autostability relative to strong constructivizations Boolean algebra distributive lattice ring commutative semigroup partial order hyperarithmetic hierarchy index set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov S. S. and Knight J. F., “Computable structure and non-structure theorems,” Algebra and Logic, 41, No. 6, 351–373 (2002).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ershov Yu. L. and Goncharov S. S., Constructive Models, Ser. Siberian School of Algebra and Logic, Kluwer Academic/Plenum Publishers, New York, etc. (2000).Google Scholar
  3. 3.
    Ash C. J. and Knight J. F., Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam (2000) (Stud. Logic Found. Math.; V. 144).MATHGoogle Scholar
  4. 4.
    Nurtazin A. T., Computable Classes and Algebraic Criteria of Autostability [in Russian], Dis. Kand. Fiz.-Mat. Nauk, Inst. Mat. Mekh., Alma-Ata (1974).Google Scholar
  5. 5.
    Goncharov S. S. and Marchuk M. I., “Index sets of constructive models of bounded signature which are autostable relative to strong constructivizations,” Algebra and Logic (to be published).Google Scholar
  6. 6.
    Goncharov S. S. and Marchuk M. I., “Index sets of constructive models of finite signature and graph signature which are autostable relative to strong constructivizations,” Algebra and Logic (to be published).Google Scholar
  7. 7.
    Goncharov S. S. and Marchuk M. I., “Index sets of autostable relative to strong constructivizations constructive models,” Vestnik NGU. Ser. Mat. Mekh. Inform., 13, No. 4, 43–67 (2013).Google Scholar
  8. 8.
    Marker D., “Non Σn axiomatizable almost strongly minimal theories,” J. Symbolic Logic, 54, No. 3, 921–927 (1989).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Goncharov S. S. and Khoussainov B., “Complexity of theories of computable categorical models,” Algebra and Logic, 43, No. 6, 365–373 (2004).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ash C. J. and Knight J. F., “Pairs of recursive structures,” Ann. Pure Appl. Logic, 46, No. 3, 211–234 (1990).MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Goncharov S. S., Countable Boolean Algebras and Decidability [in Russian], Nauchnaya Kniga, Novosibirsk (1996).Google Scholar
  12. 12.
    Chang C. C. and Keisler H. J., Model Theory, North-Holland, Amsterdam and London (1973).MATHGoogle Scholar
  13. 13.
    Nurtazin A. T., “Strong and weak constructivization and computable families,” Algebra and Logic, 13, No. 3, 177–184 (1974).CrossRefGoogle Scholar
  14. 14.
    Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Comp., New York, St. Louis, San Francisco, Toronto, London, and Sydney (1972).MATHGoogle Scholar
  15. 15.
    Tarski A., “Arithmetical classes and types of Boolean algebras,” Bull. Amer. Math. Soc., 55, 63 (1949).Google Scholar
  16. 16.
    Ershov Yu. L., “Decidability of the elementary theory of distributive structures with relative complements and the theory of filters,” Algebra i Logika, 3, No. 3, 17–38 (1964).MATHMathSciNetGoogle Scholar
  17. 17.
    Remmel J. B., “Recursive Boolean algebras,” in: Handbook of Boolean Algebras. V. 3, Elsevier, Amsterdam, etc., 1989, pp. 1097–1165.Google Scholar
  18. 18.
    Mead J., “Recursive prime models for Boolean algebras,” Colloq. Math., 41, 25–33 (1979).MATHMathSciNetGoogle Scholar
  19. 19.
    Pal’chunov D. E., Trofimov A. V., and Turko A. I., “Autostability relative to strong constructivizations of Boolean algebras with distinguished ideals,” Siberian Math. J., 56, No. 3, 490–498 (2015).Google Scholar
  20. 20.
    Csima B. F., Montalbán A., and Shore R. A., “Boolean algebras, Tarski invariants, and index sets,” Notre Dame J. Formal Logic, 47, No. 1, 1–23 (2006).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. S. Goncharov
    • 1
  • N. A. Bazhenov
    • 1
  • M. I. Marchuk
    • 2
  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations