Advertisement

Siberian Mathematical Journal

, Volume 55, Issue 5, pp 961–967 | Cite as

On a class of inflexible polyhedra

  • I. Kh. SabitovEmail author
Article
  • 31 Downloads

Abstract

We consider a class of polyhedra that we call pyramids and prove under some simple but rather general conditions on the extrinsic structure that the pyramids are inflexible. Moreover, this inflexibility property can be established also in multidimensional spaces of arbitrary constant curvature under appropriate conditions.

Keywords

pyramid main vertex existence topological genus condition on the extrinsic structure flexibility inflexibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoker J. J., “Geometrical problems concerning polyhedra in the large,” Comm. Pure Appl. Math., 21, No. 2, 119–168 (1968).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Connelly R., “An attack on rigidity. I and II,” Bull. Amer. Math. Soc., 81, 566–569 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Connelly R., “The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surfaces,” Adv. Math., 37, No. 3, 272–299 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kann E., “Infinitesimal rigidity of almost-convex oriented polyhedra of arbitrary Euler characteristic,” Pacific J. Math., 144, No. 1, 71–103 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dolbilin N. P., Shtanko M. A., and Shtogrin M. I., “On rigidity of polyhedral spheres with even-angle faces,” Russian Math. Surveys, 51, No. 3, 543–544 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dolbilin N. P., Shtanko M. A., and Shtogrin M. I., “Rigidity of a quadrillage of the torus,” Russian Math. Surveys, 54, No. 4, 839–840 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Rodrigues L. and Rosenberg H., “Rigidity of certain polyhedra in ℝ3,” Comment. Math. Helv., 75, No. 3, 478–503 (2000).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gluck H., “Almost all simply connected closed surfaces are rigid,” in: Lecture Notes in Math., Springer-Verlag, Berlin, 438, 1975, pp. 225–239.Google Scholar
  9. 9.
    Sabitov I. Kh., “Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics,” Izv. Math., 66, No. 2, 377–391 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ziegler G. M., “Polyhedral surfaces of high genus,” arXiv:math/0412093v1 [math.MG]. Dec. 5, 2004, pp. 1–21.Google Scholar
  11. 11.
    McMullen P., Schulz Ch., and Wills J. M., “Polyhedral 2-manifolds in E 3 with unusually large genus,” Israel J. Math., 46, 127–144 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chervone D., “Vertex-minimal simplicial immersions of the Klein bottle in three space,” Geom. Dedicata, 50, No. 2, 117–141 (1994).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lawrencenko S. and Negami S., “Irreducible triangulations of the Klein bottle,” J. Combin. Theory, Ser. B, 70, 265–291 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ringel G. and Youngs J. W. T., “Lósung des Problems der Nachbargebiete auf orientierbaren Fáchen,” Arch. Math., 20, No. 2, 190–201 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hilbert D. and Cohn-Vossen S., Geometry and the Imagination, Chelsea Publishing Company, New York (1958).Google Scholar
  16. 16.
    Banchoff T. F., “Triple points and surgery of immersed surfaces,” Proc. Amer. Math. Soc., 46, 407–413 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lawrencenko S., Geometric Embeddings and Immersions of Pyramidal Triangulations of Surfaces in 3-Space. Invited Lecture at University of Seville, 19 March 2013; http://www.imus.us.es/actividad/1111.Google Scholar
  18. 18.
    Sabitov I. Kh., “New classes of rigid polyhedra,” in: Abstracts: All-Union Conference on Geometry and Analysis, Novosibirsk, 1989, p. 72.Google Scholar
  19. 19.
    Sabitov I. Kh., “Description of flexes of degenerate suspensions,” Math. Notes, 33, No. 6, 462–468 (1983).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations