Siberian Mathematical Journal

, Volume 53, Issue 3, pp 551–553 | Cite as

On a universal Σ-function over a tree



We obtain a sufficient condition for the absence of any universal Σ-function in an admissible set (a hereditarily finite admissible set). We construct a tree T of height 4 such that no universal Σ-function exists in the hereditarily finite admissible set ℍ\(\mathbb{F} \)(T) over T.


admissible set Σ-function universal Σ-function hereditarily finite admissible set tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ershov Yu. L., Definability and Computability, Consultants Bureau, New York and London (1996).Google Scholar
  2. 2.
    Rudnev V. A., “A universal recursive function on admissible sets,” Algebra and Logic, 25, No. 4, 267–273 (1986).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Morozov A. S. and Puzarenko V. G., “Σ-subsets of natural numbers,” Algebra and Logic, 43, No. 3, 162–178 (2004).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kalimullin I. Sh. and Puzarenko V. G., “Computability principles on admissible sets,” Siberian Adv. in Math., 15, No. 4, 1–33 (2005).MathSciNetGoogle Scholar
  5. 5.
    Puzarenko V. G., “Computability in special models,” Siberian Math. J., 46, No. 1, 148–165 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Khisamiev A. N., “On Σ-subsets of naturals over abelian groups,” Siberian Math. J., 47, No. 3, 574–583 (2006).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Khisamiev A. N., “Σ-Bounded algebraic systems and universal functions. I,” Siberian Math. J., 51, No. 1, 178–192 (2010).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Khisamiev A. N., “Σ-Bounded algebraic systems and universal functions. II,” Siberian Math. J., 51,No. 3, 537–551 (2010).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations