A general estimate in the invariance principle

Article

Abstract

We obtain estimates for the accuracy with which a random broken line constructed from sums of independent nonidentically distributed random variables can be approximated by a Wiener process. All estimates depend explicitly on the moments of the random variables; meanwhile, these moments can be of a rather general form. In the case of identically distributed random variables we succeed for the first time in constructing an estimate depending explicitly on the common distribution of the summands and directly implying all results of the famous articles by Komlós, Major, and Tusnády which are devoted to estimates in the invariance principle.

Keywords

invariance principle estimates for the rate of convergence Komlós-Major-Tusnády estimates method of the same probability space 

References

  1. 1.
    Prokhorov Yu. V., “Convergence of random processes and limit theorems of probability,” Teor. Veroyatnost. i Primenen., 1, No. 2, 177–237 (1956).MathSciNetMATHGoogle Scholar
  2. 2.
    Skorokhod A. V., Studies on the Theory of Random Processes [in Russian], Kievsk. Univ., Kiev (1961).Google Scholar
  3. 3.
    Borovkov A. A., “On the rate of convergence for the invariance principle,” Theor. Probability Appl., 18, No. 2, 207–225 (1973).MATHCrossRefGoogle Scholar
  4. 4.
    Komlós J., Major P., and Tusnády G., “An approximation of partial sums of independent RV’s and sample DF. I,” Z. Wahrsch. Verw. Gebiete, Bd 32,H. 1/2, 111–133 (1975).MATHCrossRefGoogle Scholar
  5. 5.
    Komlós J., Major P., and Tusnády G., “An approximation of partial sums of independent RV’s and sample DF. II,” Z. Wahrsch. Verw. Gebiete, Bd 34,H. 1, 33–58 (1976).MATHCrossRefGoogle Scholar
  6. 6.
    Skorokhod A. V., “On a representation of random variables,” Theor. Probability Appl., 21, No. 3, 628–632 (1977).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sakhanenko A. I., “The rate of convergence in the invariance principle for nonidentically distributed variables with exponential moments,” Trudy Inst. Mat. SO RAN. Vol. 3, pp. 4–49 (1983).MathSciNetGoogle Scholar
  8. 8.
    Sakhanenko A. I., “Estimates in the invariance principle,” in: Trudy Inst. Mat. SO RAN. Vol. 5 [in Russian], Novosibirsk, Nauka, 1985, pp. 27–44.Google Scholar
  9. 9.
    Sakhanenko A. I., “On the accuracy of normal approximation in the invariance principle,” in: Trudy Inst. Mat. SO RAN. Vol. 19 [in Russian], Novosibirsk, Nauka, 1989, pp. 4–49.Google Scholar
  10. 10.
    Sakhanenko A. I., “Estimates in the invariance principle in terms of truncated power moments,” Siberian Math. J., 47, No. 6, 1113–1127 (2006).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Einmahl U., “Extensions of results of Komlós, Major, and Tusnády to the multivariate case,” J. Multivariate Anal., 28, No. 1, 20–68 (1989).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Zaitsev A. Yu., “Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I,” Theor. Probability Appl., 45, No. 4, 624–641 (2000).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Zaitsev A. Yu., “Estimates for the rate of strong Gaussian approximation for the sums of i.i.d. multidimensional random vectors,” J. Math. Sci. (New York), 152, No. 6, 875–884 (2008).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zaitsev A. Yu., “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors,” J. Math. Sci. (New York), 163, No. 4, 399–408 (2010).CrossRefGoogle Scholar
  15. 15.
    Zaitsev A. Yu., “Estimates of the Levi-Prokhorov distance in the central limit theorem for random vectors with finite exponential moments,” Theor. Probability Appl., 31, No. 2, 203–220 (1986).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Yugra State UniversityKhanty-MansiĭskRussia

Personalised recommendations