Siberian Mathematical Journal

, Volume 52, Issue 1, pp 105–112 | Cite as

Minimal Lagrangian submanifolds in ℂP n with diagonal metric

  • I. P. RybnikovEmail author


We propose a method for constructing minimal Lagrangian submanifolds in ℂP n using the Baker-Akhiezer functions of algebraic spectral curves.


Lagrangian submanifold Baker-Akhiezer function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mironov A. E., “Finite-gap minimal Lagrangian surfaces in ℂP2,” in: OCAMI (Osaka City University Advanced Mathematical Institute) Studies Ser., 2010, 3, pp. 185–196.MathSciNetGoogle Scholar
  2. 2.
    Strominger A., Yau S.-T., and Zaslow E., “Mirror symmetry is T-duality,” Nuclear Phys. B, 479, No. 1–2, 243–259 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Castro I. and Urbano F., “New examples of minimal Lagrangian tori in the complex projective plane,” Manuscripta Math., 85, No. 3–4, 265–281 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Haskins M., “Special Lagrangian cones,” Amer. J. Math., 126, No. 4, 845–871 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Sharipov R. A., “Minimal tori in the five-dimensional sphere in ℂ3,” Theoret. and Math. Phys., 87, No. 1, 363–369 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hui Ma and Yujie Ma., “Totally real minimal tori in ℂP2,” Math. Z., 249, No. 2, 241–267 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Carberry E. and McIntosh I., “Minimal Lagrangian 2-tori in ℂP2 come in real families of every dimension,” J. London Math. Soc., 69, 531–544 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mironov A. E., “On a family of conformally flat minimal Lagrangian tori in ℂP3,” Math. Notes, 81, No. 3, 329–337 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Joyce D., “Special Lagrangian m-folds in ℂm with symmetries,” Duke Math. J., 115, No. 1, 1–51 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Mironov A. E., “New examples of Hamilton-minimal and minimal Lagrangian manifolds in ℂn and ℂPn,” Sb.: Math., 195, No. 1, 85–96 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Krichever I. M., “Algebraic-geometric n-orthogonal curvilinear coordinate systems and solutions of the associativity equations,” Funct. Anal. Appl., 31, No. 1, 25–39 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Wolfson J., “Minimal Lagrangian diffeomorphisms and the Monge-Ampere equation,” J. Differential Geometry, 46, 335–373 (1997).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mironov A. E. and Taĭmanov I. A., “Orthogonal curvilinear coordinate systems corresponding to singular spectral curves,” Proc. Steklov Inst. Math., 255, 169–184 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations