Development of a Technique to Simulate the Injection Molding of Metallic-Powder-Filled Polymers

  • 3 Accesses


Apart from subtractive machining technologies, additive and net-shape replication technologies are being developed and hybrid technologies appear. In particular, PIM (MIM, CIM) technologies, which belong to both powder metallurgy and casting, have been formed. As in other hi-tech production processes, the mathematical simulation of injection molding process is widely used in PIM technology to produce high-quality products, to estimate design and technical solutions, and to avoid the expensive trial-and-error method.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    A. B. Semenov, A. E. Gavrilenko, and B. I. Semenov, “Next-generation casting technologies and their adaptation and development in Russia: I. At the beginning of a new technological paradigm,” Tekhnol. Metallov, No. 4, 13–25 (2016).

  2. 2

    A. B. Semenov, A. N. Muranov, A. A. Kutsbakh, and B. I. Semenov, “Injection casting of structured multiphase materials,” Vestn. RUDN: Inzh. Issledov. 18 (4), 407–425 (2017).

  3. 3

    Handbook of Metal Injection Molding, Ed. by D. F. Heaney (Woodhead Publishing Limited, 2012).

  4. 4

    Dr. M. Thornagel, “MIM-simulation: a virtual study on phase separation,” in Proceedings of Conference on Euro PM2009—Powder Injection Moulding—Quality & Simulation (2009).

  5. 5

    T. Barriere, J. C. Gelin, and B. Liu, “Improving mould design and injection parameters in metal injection moulding by accurate 3D finite element simulation,” J. Mater. Proc. Techn. 125–126, 518–524 (2002).

  6. 6

    W. Fang, X. B. He, R. J. Zhang, X. M. You, and X. H. Qu, “Effects of particle characteristics on homogeneity of green bodies in powder injection moulding,” Powder Metall. 57 (4), 274–282 (2014).

  7. 7

    S. K. Samanta, H. Chattopadhyay, and M. M. Godkhindi, “Modeling the powder–binder separation in injection stage of PIM,” Prog. Comp. Fluid Dynamics 11 (5), 292–304 (2011).

  8. 8

    V. V. Bilovol, “Mould filling simulations during powder injection moulding,” Philosophical Dissertation (Delft, 2003).

  9. 9

    N. A. Patankar and H. H. Hu, “Rheology of a suspension of particles in viscoelastic fluids,” J. Non-Newton. Fluid Mechan. 96 (3), 427–443 (2001).

  10. 10

    P. R. Nott, E. Guazzelli, and O. Pouliquen, “The suspension balance model revisited,” Phys. Fluids 23 (4), 13 (2011).

  11. 11

    Autodesk Knowledge Network. Suspension Balance Model (Autodesk Knowledge Network, 2018). 3AA2-5D2E- 4C97-8174-33F9F11990AF. Cited May 5, 2018.

  12. 12

    S. Ahn, S. T. Chung, S. V. Atre, S. J. Park, and R. M. German, “Integrated filling, packing and cooling CAE analysis of powder injection moulding parts,” Powder Metallurgy 51 (4), 318–326 (2008).

  13. 13

    T. G. Kang, S. Ahn, S. H. Chung, T. Chung, Y. S. Kwon, S. J. Park, and R. M. German, Modeling and simulation of metal injection molding (MIM), Ed. by D. F. Heaney (Woodhead Publishing, 2012), pp. 197–236.

  14. 14

    S. Ahn, S. T. Chung, S. J. Park, and R. M. German, “Simulation tool for powder injection molding and its applications,” PIM Int. 3 (4), 64–69 (2009).

  15. 15

    C. Kukla, W. Friesenblchler, I. Duretek, and M. Thornagel, “New insights into feedstock behaviour and injection moulding simulation for PIM,” in Proceedings of Conference Powder Injection Moulding Euro PM2008 (2008), pp. 287–392.

  16. 16

    Y. Thomas, E. Baril, F. Ilinca, and J. F. Hetu, “Development of titanium dental implant by MIM: experiments and simulation,” in Adv.Powder Metallurgy & Particulate Mater (2009), pp. 4–94.

  17. 17

    D. F. Heaney, Design for metal injection molding (MIM), Ed. by D. F. Heaney (Woodhead Publishing, 2012), pp. 29–49.

  18. 18

    R. M. German, Designing for Metal Injection Moulding: A Guide for Designers and End-Users (Powder Injection Moulding International, 2008), Vol. 6 (4).

  19. 19

    B. Smarslok and R. M. German, “Identification of design parameters in metal powder injection molding,” J. Adv. Mater. 37 (4), 3–11 (2005).

  20. 20

    Autodesk Knowledge Network. Suspension Balance Model (Autodesk knowledge network, 2018). 3AA2-5D2E-4C97-8174-33F9F11990AF. Cited May 5, 2018.

  21. 21

    A. B. Semenov, A. A. Kutsbakh, D. B. Golodets, A. N. Muranov, and B. I. Semenov, “Numerical simulation of injection casting during the preparation of the production of shaped parts by injection casting of powder slurries,” in Proceedings of 2nd All-Russia Conference on Mechanics and Mathematical Simulation in Engineering (Izd. MGTU, Moscow, 2017), pp. 423–426.

  22. 22

    A. N. Muranov, A. B. Semenov, P. S. Marakhovskii, E. Yu. Chutskova, and B. I. Semenov, “Thermophysical properties of a polymer–powder mixture for the production of 42CrMo4 steel parts by injection casting,” Perspekt. Mater. (2018) (in press).

  23. 23

    D. O. Kazmer, Development and Designing of Casting Molds, Ed. by V. G. Duvidzon (TsOP Professiya, St. Petersburg, 2011).

Download references

Author information

Correspondence to A. A. Kutsbakh.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semenov, A.B., Kutsbakh, A.A., Muranov, A.N. et al. Development of a Technique to Simulate the Injection Molding of Metallic-Powder-Filled Polymers. Russ. Metall. 2019, 1351–1356 (2019).

Download citation


  • thixotropy
  • materials with thixotropic properties
  • polymer–powder compositions
  • PIM technology
  • injection casting
  • suspension flow
  • numerical simulation