Russian Metallurgy (Metally)

, Volume 2019, Issue 13, pp 1471–1478 | Cite as

Core Structure Formation in the Joints Fabricated by Friction Stir Welding of Metals with Polymorphic Transformations

  • A. A. Chularis
  • R. A. RzaevEmail author
  • O. G. Zotov
  • A. O. Zotova


The microstructures of the weld core, the heat-deformation-affected zone, and the heat-affected zone having formed during the friction stir welding (FSW) of 12Kh18N10T steel and OT4-1 and VT-1 alloys are studied. The weld core of the solid-state FSW welded joints made of the metals and alloys that undergo polymorphic transformations is shown to form under structural superplasticity due to corporative recrystallization processes and phase transformations.


friction stir welding weld core heat-deformation-affected zone heat-affected zone recrystallization superplasticity 



  1. 1.
    V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004).Google Scholar
  2. 2.
    R. O. Kaibyshev, “Dynamic recrystallization and plastic deformation mechanisms in magnesium steels and alloys,” Extended Abstract of Dr. Sci. (Phys.-Math.) Dissertation, Moscow, 1995.Google Scholar
  3. 3.
    Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001).Google Scholar
  4. 4.
    N. V. Skiba, “Interaction of plastic deformation modes and their influence on crack nucleation and growth in nanocrystalline solids,” Extended Abstract of Dr. Sci. (Phys.-Math.) Dissertation, St. Petersburg, 2014.Google Scholar
  5. 5.
    A. V. Nokhrin, “Acceleration of grain-boundary diffusion during recrystallization in submicrocrystalline metals and alloys produced by severe plastic deformation,” Pis’ma Zh. Tekh. Fiz. 38 (13), 70–78 (2012).Google Scholar
  6. 6.
    S. Yu. Mironov, “Plastic deformation mechanisms and microstructure evolution during friction stir welding,” Extended Abstract of Dr. Sci. (Phys.-Math.) Dissertation, Ufa, 2016.Google Scholar
  7. 7.
    E. V. Nesterova and V. V. Rybin, “Mechanical twinning and fragmentation of commercial-purity titanium at large plastic deformation,” Fiz. Met. Metalloved. 59 (2), 396–406 (1985).Google Scholar
  8. 8.
    E. F. Dudarev, G. P. Pochivalova, Yu. R. Kolobov, et al., “Effect of deep plastic deformation and subsequent annealing on the true grain-boundary sliding in coarse-grained and submicrocrystalline titanium,” Fiz. Mezomekh., No. 7, 30–33 (2004).Google Scholar
  9. 9.
    O. A. Kaibyshev, Superplasticity in Commercial Alloys and Ceramics (Metallurgiya, Moscow, 1984).Google Scholar
  10. 10.
    G. E. Kodzhaspirov and E. I. Kamelin, “Physical simulation study of the dynamic recrystallization of a high-strength low-alloy steel,” Mater. Phys. Mechan. 27, 215–222 (2016).Google Scholar
  11. 11.
    M. P. Baryshnikov, A. S. Ishimov, M. S. Zherebtsov, et al., “Physical simulation study of the dynamic recrystallization in carbon steels during hot deformation using the GLEEBLE 3500 complex,” Izv. TulGU, Ser. Tekhn. Nauki, No. 12, 113–123 (2014).Google Scholar
  12. 12.
    V. G. Trifonov and E. V. Bobruk, “Dynamic recrystallization in aluminum alloy AK8,” Fiz. Met. Metalloved. 97 (2), 74–78 (2004).Google Scholar
  13. 13.
    E. A. Shorshorov, A. E. Gvozdev, and I. V. Tikhonov, “Calculation of the activation energy of superplastic deformation of steels and alloys during uniaxial tension,” Izv. TulGU, Ser. Materialoved., No. 2, 222–226 (2002).Google Scholar
  14. 14.
    D. N. Bogolyubova, A. E. Gvozdev, and O. V. Pantyukhin, “Laws of the manifestation of dynamic recrystallization in metals,” Izv. TulGU, Ser. Materialoved., No. 4, 276–286 (2001).Google Scholar
  15. 15.
    S. V. Bobylev and I. A. Ovid’ko, “Accommodation of grain-boundary sliding and an increase in the fracture toughness in deformed nanocrystalline matrices,” Mater. Phys. Mechan. 29 (8), 43–70 (2016).Google Scholar
  16. 16.
    R. M. Galeev, O. R. Valiakhmetov, and G. A. Salishchev, “Dynamic recrystallization of coarse-grained titanium alloy VT 30 in the α + β field,” Metally, No. 4, 97–103 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Chularis
    • 1
  • R. A. Rzaev
    • 2
    Email author
  • O. G. Zotov
    • 3
  • A. O. Zotova
    • 3
  1. 1.Don State Technical UniversityRostov-on-DonRussia
  2. 2.Astrakhan State UniversityAstrakhanRussia
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations