Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 13, pp 1319–1325 | Cite as

Analysis of the Structure of the Adsorbed Polymer Layers on the Surfaces of Metal Oxide Microparticles Using Digital Image Processing

  • N. A. Bulychev
  • M. A. Kazaryan
  • A. I. Erokhin
  • A. S. Averyushkin
  • L. N. Rabinskiy
  • V. V. BodryshevEmail author
  • B. A. Garibyan
METHODS OF STUDYING THE STRUCTURE AND PROPERTIES OF MATERIALS
  • 5 Downloads

Abstract

The shapes and the sizes of metal oxide particles in polymer-stabilized disperse systems subjected to mechanical activation are considered. The digital processing of images of metal oxide particles is used to determine the parameters of the particles and the adsorbed polymer layers and to find the density change dynamics in an adsorbed layer.

Keywords:

titanium dioxide particles iron oxide particles adsorbed polymer layer photograph (frame) image intensity material density 

Notes

REFERENCES

  1. 1.
    N. Bulychev, K. Dirnberger, H. Reimann, C. Schaller, T. Schauer, V. Zubov, and C. D. Eisenbach, “Ultrasonic treatment enhanced TiO2 surface modification with tailored amphipolar copolymers,” Europ. Coatings J. 3 (32), 34–37 (2007).Google Scholar
  2. 2.
    N. Bulychev, O. Confortini, P. Kopold, K. Dimberger, T. Schauer, F. E. Du Prez, V. Zubov, and C. D. Eisenbach, “Application of thermo-responsive poly(methylvinylether) containing copolymers in combination with ultrasonic treatment for pigment surface modification in pigment dispersions,” Polymer 48 (9), 2636–2643 (2007).CrossRefGoogle Scholar
  3. 3.
    N. Bulychev, K. Dirnberger, I. Arutunov, P. Kopold, T. Schauer, V. Zubov, and C. D. Eisenbach, “Effect of ultrasonic treatment on structure and properties of ethylhydroxyethylcellulose polymer adsorption layer on inorganic pigments in aqueous dispersion,” Progr. Organic Coatings 62 (3), 299–306 (2008).CrossRefGoogle Scholar
  4. 4.
    N. Bulychev, W. Van Camp, B. Dervaux, Y. Kirilina, K. Dirnberger, T. Schauer, V. Zubov, F. E. Du Prez, and C. D. Eisenbach, “Comparative study of the solid-liquid interface behaviour of amphiphilic block and block-like copolymers,” Macromol. Chem. Phys. 210, 287–298 (2009).CrossRefGoogle Scholar
  5. 5.
    N. Bulychev, B. Dervaux, K. Dirnberger, V. Zubov, F. E. Du Prez, and C. D. Eisenbach, “Structure of adsorption layers of amphiphilic copolymers on inorganic or organic particle surfaces,” Macromol. Chem. Phys. 9 (211), 971–977 (2010).CrossRefGoogle Scholar
  6. 6.
    N. A. Bulychev, F. N. Fomin, E. B. Malyukova, and N. B. Ur’ev, “Electrokinetic sound amplitude for the investigation of the adsorption of high-molecular compounds at interfaces,” Kolloidn. Zh., No. 4(72), 450–457 (2010).Google Scholar
  7. 7.
    N. A. Bulychev, F. N. Fomin, E. B. Malyukova, and N. B. Ur’ev, “Nanostructural aspects of the behavior of macromolecules of various molecular architecture at an interface,” Fizikokhim. Pov. Zashch. Mater., No. 4 (46), 341–348 (2010).Google Scholar
  8. 8.
    A. N. Astapov, V. V. Bodryshev, and A. A. Morgunov, “Digital image processing analysis of the structure of a material,” in Proceedings of V International Seminar on Dynamic Deformation and Contact Interaction of Thin-Walled Structures during the Action of Fields of Various Physical Origins (MAI, Moscow, 2016), pp. 18–21.Google Scholar
  9. 9.
    V. V. Bodryshev, “Analysis of the structure of a material using the photograph image intensity,” Tekhn. Metallov, No. 11, 8–12 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Bulychev
    • 1
    • 2
  • M. A. Kazaryan
    • 1
  • A. I. Erokhin
    • 1
  • A. S. Averyushkin
    • 1
  • L. N. Rabinskiy
    • 2
  • V. V. Bodryshev
    • 2
    Email author
  • B. A. Garibyan
    • 2
  1. 1.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations