Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 12, pp 1289–1296 | Cite as

Combined Processing of Copper-Smelting Slags for the Manufacture of Valuable Products

  • V. E. RoshchinEmail author
  • G. A. Adilov
  • A. D. Povolotskii
  • K. O. Potapov
RESOURCE SAVING
  • 3 Downloads

Abstract

Technological techniques are proposed to process copper-smelting slags to perform zinc recovery and selective solid-phase iron reduction in tube furnaces under laboratory conditions and to melt the reduction products in arc steelmaking furnaces to form cast iron, ferrosilicium, or building steel. Cast iron milling media, building steel bars, ceramic proppants for the oil industry, and sand for concrete production are fabricated and their properties are studied. A technological scheme is developed for combined processing of slags and a set of commercial equipment is chosen. The economic efficiency of the process of production is estimated.

Keywords:

copper-smelting slag selective reduction milling bodies proppants reinforcing steel concrete filler 

Notes

REFERENCES

  1. 1.
    K. S. Sanakulov and A. S. Khasanov, Processing of the Copper Production Slags (Fan, Tashkent, 2007).Google Scholar
  2. 2.
    D. Busolic, F. Parada, R. Parra, M. Sanchez, J. Palacios, and M. Hino, “Recovery of iron from copper flash smelting slags,” Miner. Proc. Extractive Metall. 120 (1), 32–36 (2011).CrossRefGoogle Scholar
  3. 3.
    V. E. Roshchin and K. O. Potapov, “Reclamation of the copper production slimes by pyrometallurgical iron recovery,” in Proceedings of International Conference on Resource-Saving Technologies in Ore Beneficiation and the Metallurgy of Nonferrous Metals (TOO Arkon, Karaganda, 2015), pp. 218–220.Google Scholar
  4. 4.
    T. S. Kho, D. R. Swinbourne, and T. Lehner, “Cobalt distribution during copper matte smelting,” Metall. Mater. Trans. B 37 (2), 209–214 (2006).CrossRefGoogle Scholar
  5. 5.
    C. Chen, L. Zhang, and S. Jahanshahi, “Thermodynamic modeling of arsenic in copper smelting processes,” Metall. Mater. Trans. B 41 (6), 1175–1185 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Nadirov, L. Syzdykova, and A. Zhussupova, “Copper smelter slag treatment by ammonia solution: leaching process optimization,” J. Central South Univ. 24 (12), 2799–2804 (2017).CrossRefGoogle Scholar
  7. 7.
    L. B. Sukla, R. N. Kar, and V. Panchanadikar, “Leaching of copper converter slag with Aspergillusniger culture filtrate,” Biometals 5 (3), 169–172 (1992).CrossRefGoogle Scholar
  8. 8.
    M. I. Muravyov and N. V. Fomchenko, “Leaching of nonferrous metals from copper converter slag with application of acidophilic microorganisms,” Appl. Biochem. Microbiol. 49 (6), 562–569 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Prince, J. Young, G. Ma, and C. Young, “Characterization and recovery of valuables from waste copper smelting slag,” in Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts (Springer, Cham., 2016), pp. 889–898.CrossRefGoogle Scholar
  10. 10.
    S. Sun, H. Li, J. Fan, C. Li, and Q. Liu, “Recovery of cobalt from copper converter slag by reduction-sulfurization smelting at high temperature,” in Proceedings of the 8th International Symposium on High-Temperature Metallurgical Processing (Springer, Cham., 2017), pp. 459–468.Google Scholar
  11. 11.
    C. Gonzalez, R. Parra, A. Klenovcanova, I. Imris, and M. Sanchez, “Reduction of Chilean copper slags: a case of waste management project,” Scand. J. Metall. 34 (2), 143–149 (2005).CrossRefGoogle Scholar
  12. 12.
    K. Q. Li, S. Ping, H. Y. Wang, and W. Ni, “Recovery of iron from copper slag by deep reduction and magnetic beneficiation,” Int. J. Miner., Metall. Mater. 20 (11), 1035–1041 (2013).CrossRefGoogle Scholar
  13. 13.
    K. O. Potapov, V. E. Roshchin, and A. D. Povolotskii, “Iron recovery from the copper smelting slag with the formation of building steel,” in Proceedings of XVI International Conference on Modern Problems in Steel Electrometallurgy, Ed. by V. E. Roshchin (Izd. Tsentr YuURGU, Chelyabinsk, 2015), pp. 196–201.Google Scholar
  14. 14.
    E. V. Shiryaeva, G. S. Podgorodetskii, T. Ya. Malysheva, V. B. Gorbunov, A. V. Zavodyanyi, and A. N. Shapovalov, “Influence of low-alkaline red mud on the properties and microstructure of the sinter from the charge materials of OAO Ural Steel,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 57 (1), 14–19 (2015).Google Scholar
  15. 15.
    E. V. Shiryaeva, G. S. Podgorodetskii, T. Ya. Malysheva, T. V. Detkova, and V. B. Gorbunov, “Influence of low-alkaline red mud on the composition and structure of the sinter charge from iron ore concentrates of various origins,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 57 (9), 13–17 (2015).Google Scholar
  16. 16.
    P. A. Kozlov, A. M. Pan’shin, V. N. Vyatkin, and Yu. V. Reshetnikov, “Development of a pyrometallurgical technology for the processing of the copper smelting wastes with zinc, lead, and tin recovery,” Tsvetn. Met., No. 5(869), 46–50 (2015).Google Scholar
  17. 17.
    N. J. Hain, Geology, Exploration, Drilling, and Extraction of Oil (Olimp Biznes, Moscow, 2010).Google Scholar
  18. 18.
    G. Forest, Extraction of Oil (Olimp Biznes, Moscow, 2011).Google Scholar
  19. 19.
    V. E. Roshchin and A. V. Roshchin, “Selective reduction of metals in the lattice of a complex oxide,” Russ. Metall. (Metally), No. 3, 169–175 (2013).CrossRefGoogle Scholar
  20. 20.
    V. E. Roshchin, A. V. Roshchin, and E. V. Roshchin, “Method of selective metal recovery from complex ores,” RF Patent 2460813, Byull. Izobret. (2012).Google Scholar
  21. 21.
    V. E. Roshchin and A. V. Roshchin, “Method of selective metal recovery from the complex ores formed by solid oxide solutions or oxide chemical compounds,” RF Patent 2507277, Byull. Izobret. (2014).Google Scholar
  22. 22.
    A. V. Roshchin, V. E. Roshchin, S. P. Salikhov, and S. A. Bryndin, “Line for processing complex iron-containing ores (versions),” RF Patent 130994, Byull. Izobret. (2013).Google Scholar
  23. 23.
    A. D. Povolotskii, V. D. Povolotskii, K. O. Potapov, V. E. Roshchin, A. L. Shestakov, and A. L. Rozovskii, “Method of processing iron-containing wastes,” RF Patent 2539884, Byull. Izobret. (2015).Google Scholar
  24. 24.
    A. M. Karkarin, E. G. Kokh, A. D. Povolotskii, V. D. Povolotskii, V. E. Roshchin, A. L. Rozovskii, V. A. Syrykh, and A. L. Shestakov, “Method for producing cast iron milling bodies,” RF Patent 2634535, Byull. Izobret. (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. E. Roshchin
    • 1
    Email author
  • G. A. Adilov
    • 1
  • A. D. Povolotskii
    • 1
  • K. O. Potapov
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations