Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 12, pp 1264–1267 | Cite as

Effect of Electric Fields on the Structure of an Aluminum Alloy during Magnetohydrodynamic Treatment

  • O. G. Ospennikova
  • A. B. LaptevEmail author
  • M. V. Pervukhin
  • A. N. Afanas’ev-Khodykin
  • V. N. Timofeev
  • D. A. Movenko
MANUFACTURING OF SPECIAL METAL PRODUCTS

Abstract

The microstructure of a 1417M alloy after magnetohydrodynamic (MHD) treatment has been studied. An electric field induced in the aluminum alloy melt is shown to cause electric transfer and to homogenize its structure. During the formation of an ingot upon MHD treatment, intermetallic phase dendrites are preferably oriented along the lines of the induced electric field.

Keywords:

aluminum alloys magnetohydrodynamic treatment microstructure 

Notes

FUNDING

This work was performed in the framework of project 16-43-242013 p_ofi_m “Influence of induced electric field on hydrogen ions in the aluminum alloy melt” and was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk region, and the Krasnoyarsk regional foundation for support scientific and scientific-engineering activity.

REFERENCES

  1. 1.
    E. N. Kablov, B. V. Shchetanov, D. V. Grashchenkov, A. A. Shavnev, and A. N. Hyafkin, “Metallic composites based on Al, Si, C,” Aviats. Mater. Technol., No. S, 373–380 (2012).Google Scholar
  2. 2.
    E. N. Kablov, O. V. Startsev, and I. M. Medvedev, “Review of the foreign experience of studies of corrosion and corrosion protection means,” Aviats. Mater. Technol., No. 2, 76–87 (2015).  https://doi.org/10.18577/2071-9140-2015-0-2-76-87
  3. 3.
    M. G. Kurs and S. A. Karimova, “Natural accelerated tests: the features of the technique and the methods of estimating corrosion characteristics of aluminum alloys,” Aviats. Mater. Technol., No. 1, 51–57 (2014).  https://doi.org/10.18577/2071-9140-2014-0-1-51-57 CrossRefGoogle Scholar
  4. 4.
    A. A. Kutsenko, “Effect of electric field on the structure formation and properties of perfect ingots,” Extended Abstract of Cand. Sci. (Eng.), Novokuznetsk, SGIU, 2014.Google Scholar
  5. 5.
    P. Baraskara, R. Chouhana, A. Agrawalb, R. J. Choudharuc, P. K. Send, and P. Sena,” Magnetic field induced changes in linear and nonlinear optical properties of Ti incorporated Cr2O3 nanostructured thin film,” Physics Letters 382 (12), 860–864 (2018).CrossRefGoogle Scholar
  6. 6.
    G. N. Minenko and Yu. A. Smirnova,”Physical model of action of electric field on the process of alloy solidification,” Metallurg. Mashinostroeniya, No. 3, 48–49 (2009).Google Scholar
  7. 7.
    E. N. Kablov, “Innovation solutions of FGUP VIAM GNTs RF for “Strategic directions of designing materials and technologies of their processing up to 2030,” Aviats. Mater. Technol., No. 1 (34), 3–33 (2015).  https://doi.org/10.18577/2071-9140-2015-0-1-3-33
  8. 8.
    W. A. P. Luck, D. Klein, and K. Rangsriwatananon, “Anticooperativity of the two water OH groups,” J. Mol. Struct., No. 416, 287–296 (1997).CrossRefGoogle Scholar
  9. 9.
    R. Zh. Akhiyarov, S. R. Rakhimov, Yu. G. Matveev, A. B. Laptev, D. E. Bugai, and O. R. Latypov, “Computational procedure of parameters of magnetohydrodynamic treatment for oil preparation in oil fields,” Neftegazovoe Delo, No. 5, 342–351 (2011).Google Scholar
  10. 10.
    R. Zh. Akhiyarov, D. A. Gogolev, A. B. Laptev, and D. E. Bugai, “Increase in the efficiency of the deemulsion of water–oil media by their magnetohydrodynamic treatment,” Neftegazovoe Delo, No. 6, 27 (2006).Google Scholar
  11. 11.
    A. B. Laptev, R. Zh. Akhiyarov, and S. E. Cherepashkin, “The method of processing a technological liquid flow and the device for its realization,” RF Patent 2287492, Bull. Izobret., No. 32 (Pt I) (2006).Google Scholar
  12. 12.
    A. B. Laptev and G. P. Navalikhin “The method of processing corrosive medium,” RF Patent 2293707, Bull. Izobret. No. 3 (Pt III) (2006).Google Scholar
  13. 13.
    V. I. Dubodelov, “Effect of alternating magnetic field on the diffusion in liquid aluminum,” Materialoved., No. 12, 27–29 (2003).Google Scholar
  14. 14.
    A. B. Laptev, “Method and aggregates for magnetohydrodynamic treatment of water–oil media,” Extended Abstract of Doctorial (Eng.) Dissertation, Ufa, UGNTU, 2008.Google Scholar
  15. 15.
    A. B. Laptev, M. V. Pervukhin, D. A. Movenko, A. N. Afanas’ev-Khodykin, V. N. Timofeev, and I. A. Galushka, “Effect of magnetohydrodynamic treatment of the 1417M alloy on the structure and the hydrogen content in it,” Vopr. Materialoved. 91 (3), 35–43 (2017).Google Scholar
  16. 16.
    A. B. Laptev, M. V. Pervukhin, A. N. Afanas’ev-Khodykin, V. N. Timofeev, D. A. Movenko, and I. A. Galushka, “Electrotransfer of alloying element ions in aluminum alloys by the magnetohydrodynamic treatment of the melt,” Zh. Sib. Federal. Univer., Ser. Tekhn.Tekhnolog. 10 (8), 1032–1041 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. G. Ospennikova
    • 1
  • A. B. Laptev
    • 1
    Email author
  • M. V. Pervukhin
    • 2
  • A. N. Afanas’ev-Khodykin
    • 1
  • V. N. Timofeev
    • 2
  • D. A. Movenko
    • 1
  1. 1.All-Russia Research Institute of Aviation Materials VIAMMoscowRussia
  2. 2.KrasnoyarskRussia

Personalised recommendations