Effect of High-Temperature Coatings on the Reliability Characteristics of GTE Blade Elements


The paper presents the results of experimental studies of the effect of high-temperature coatings on turbine and compressor blades made of high-temperature nickel and titanium alloys on the service life characteristics during gas corrosion, thermal loading, and thermomechanical loading: quantitative cracking resistance characteristics, fracture toughness K1C, and fatigue life.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.


  1. 1

    N. V. Abraimov and Yu. S. Eliseev, Chemothermal Treatment of High-Temperature Steels and Alloys (Intermet Inzhiniring, Moscow, 2001).

  2. 2

    E. N. Kablov, Cast Blades of Gas-Turbine Engines (Alloys, Technologies, and Coatings) (Nauka, Moscow, 2006).

  3. 3

    N. V. Abraimov and V. A. Geikin, Temperature-Stable Coatings and Welding in Gas-Turbine Engines (Nauka Technol., Moscow, 2018).

  4. 4

    N. V. Abraimov, “Combined coatings for gas-turbine blades,” Rus. Metall. (Metally), No. 12, (2018).

  5. 5

    S. A. Budinovskii, D. A. Chubarov, A. A. Smirnov, and P. V. Matveev, “Effect of the thickness of a ceramic layer of a heat protective coating on the heat conductivity coefficient,” Elektrometallurgiya, No. 4, 30–38 (2018).

  6. 6

    E. P. Orlov, “Technology of the plasma deposition of heat-protective coatings. Effect of technological regimes and materials on operating characteristics of coatings,” in Proceedings of the Scientific-Technical Conference and the Scientific-Technical Seminar of Young Scientists and Specialists of the Rocket-Space Industry on “The Future of the Russian Cosmonautics in Innovation Developments of Young Specialists” (Korolev, 2014), pp. 35–41.

  7. 7

    S. A. Budinovskii, P. V. Matveev, A. A. Smirnov, and D. A. Chubarov, “Heat-protective coatings for working turbine blades made of high-temperature nickel superalloys with an external magnetron ceramic layer,” Elektrometallurgiya, No. 1, 3–10 (2019).

  8. 8

    S. A. Budinovskii, D. A. Chubarov, P. V. Matveev, and A. A. Smirnov, “Properties of a ceramic layer of a heat-protective coating deposited by magnetron sputtering,” Elektrometallurgiya, No. 2, 27–32 (2019).

  9. 9

    R. C. David and R. P. Simon, “Phillpot thermal barrier coating materials,” Materials Today 8 (6), 22–29 (2005).

  10. 10

    S. A. Budinovskii, S. A. Muboyadzhyan, A. M. Gayamov, and P. V. Matveev, “Design of ion-plasma high-temperature metallic layers of heat-protective coating for cooled turbine blades,” Metalloved. Term. Obrab. Met., No. 11, 16–21 (2013).

  11. 11

    M. Gupta, N. Curry, P. Nylen, N. Markocsan, and R. Vassen, “Design of next generation thermal barrier coatings: experiments and modeling,” Surfacing Technology 220, 20–26 (2013).

  12. 12

    N. V. Abraimov and A. Yu. Ivanova, “High-temperature coatings for high-temperature titanium alloys,” Elektrometallurgiya, No. 5, 20–30 (2017).

  13. 13

    N. V. Abraimov, A. Yu. Ivanova, and A. G. Degtyareva “The composition and the structure of coatings on VT‑41 and VIT1 titanium alloys,” Elektrometallurgiya, No. 3, 28–33 (2018).

  14. 14

    N. V. Abraimov and A. Yu. Ivanova, “Effect of coatings on the high-temperature strength of the VT-41 and VIT1 alloys upon isothermal oxidation,” Elektrometallurgiya, No. 2, 23–31 (2018).

  15. 15

    N. A. Nochovnaya, V. I. Ivanov, E. B. Alekseev, and A. C. Kochetkov, “Methods of optimization of the service properties of alloys based on titanium intermetallic compounds,” Aviats. Mater. Technol., No. S, 196–206 (2012).

  16. 16

    O. N. Grebenyuk and M. V. Zimina, “Oxidation of the intermetallic Ti2AlNb-based alloy at temperatures to 800°C,” Metalloved., No. 4, 36–40 (2010).

  17. 17

    Y. Wang, J. Yan, H. Fan, and J. Wang, “Oxidation resistance and corrosion behavior of hot-drip aluminized coatings on commercial purity titanium,” Surface and Coating Technology 206, 1277–1282 (2011).

  18. 18

    J. Shi, H. Q. Li, M. Q. Wan, H. L. Wang, and X. Wang, “High-temperature oxidation and inter-diffusion behavior of electroplated Ni–Re diffusion barriers between NiCo–CrAlY coating and orthorhombic-Ti2AlNb alloy,” Corrosion Science 102, 200–208 (2016).

Download references

Author information

Correspondence to N. V. Abraimov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abraimov, N.V., Zolotareva, A.Y. Effect of High-Temperature Coatings on the Reliability Characteristics of GTE Blade Elements. Russ. Metall. 2019, 1268–1274 (2019).

Download citation


  • heat resistance
  • protective coatings
  • service life
  • cracking resistance
  • alloys
  • high-temperature strength