Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 11, pp 1220–1223 | Cite as

Viscosity of Molten Brass and Copper Used for Quality Control in the Charge–Melt–Ingot Chain

  • G. A. TkachukEmail author
  • O. A. Chikova
  • V. V. V’yukhin
Article
  • 1 Downloads

Abstract

The viscosities of melts of L63, L68, LS59-1A brasses and M2 copper are studied. Their samples were taken from the charge materials and solidified ingots in the OAO Revda Nonferrous Metal Treatment Plant. The microstructures of the ingots were analyzed earlier by traditional metallographic methods. Metallurgical defects of the following three types were detected: exogenous nonmetallic inclusions, segregation inclusions, and discontinuities and pores.

Keywords:

brass copper microstructure melt viscosity microheterogeneities quality control 

Notes

REFERENCES

  1. 1.
    P. S. Popel, O. A. Chikova, and V. M. Matveev, “Metastable colloidal states of liquid metallic solutions,” High Tempe. Mater. Proc. 14 (14), 219–234 (1995).Google Scholar
  2. 2.
    I. G. Brodova, I. V. Polents, D. V. Bashlikov, P. S. Popel, and O. A. Chikova, “The forming mechanism of ultradispersed phases in rapidly solidified aluminium alloys,” Nanostruct. Mater. 6 (1–4), 477–479 (1995).CrossRefGoogle Scholar
  3. 3.
    P. S. Popel’, “Metastable microheterogeneity of melts in systems with a eutectic and a monotectic and its influence on the structure of an alloy after solidification,” Rasplavy, No. 1, 22–49 (2005).Google Scholar
  4. 4.
    V. Sidorov, P. Popel, M. Calvo-Dahlborg, U. Dahlborg, and V. Manov, “Heat treatment of iron based melts before quenching,” Mater. Sci. Eng. A 304306 (1–2), 480–486 (2001).CrossRefGoogle Scholar
  5. 5.
    O. A. Chikova, A. N. Konstantinov, E. V. Shishkina, and D. S. Chezganov, “Effect of the microheterogeneity and the solidification conditions of the Al–50% Sn melt on the mechanical properties of the phase constituents of the ingot,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 5, 3–7 (2014).Google Scholar
  6. 6.
    V. S. Tsepelev, N. A. Zaitseva, and O. A. Chikova, “Effect of heat treatment of the Cu–7.1% P melt on the microstructure of the east metal,” Russ. Metall. (Metally), No. 1, 26–29 (2015).Google Scholar
  7. 7.
    O. A. Chikova, V. S. Tsepelev, V. V. V’yukhin, and K. Yu. Shmakova, “Designing a process of production of high-entropy Cu–Ga–Pb–Sn–Bi alloys (soldrs),” Metallurg, No. 5, 82–86 (2015).Google Scholar
  8. 8.
    O. A. Chikova, K. V. Nikitin, O. P. Moskovskikh, and V. S. Tsepelev, “Viscosity end electrical conductivity of liquid hypereutectic alloys Al–Si,” Acta Metall. Slovaca 22 (3), 153–163 (2016).CrossRefGoogle Scholar
  9. 9.
    K. Shmakova, O. Chikova, and V. Tsepelev, “Viscosity of liquid Cu–Sn alloys,” Phys. Chem. Liquids 56 (1), 1–8 (2018).CrossRefGoogle Scholar
  10. 10.
    V. I. Nikitin and K. V. Nikitin, Heredity in Cast Alloys (Mashinostroenie, Moscow, 2005).Google Scholar
  11. 11.
    G. V. Tyagunov, V. S. Tsepelev, M. N. Kushnir, and G. N. Yakovlev, “Unit for measurement of the kinematic viscosity of metallic melts,” Zavod. Lab., No. 10, 919–920 (1980).Google Scholar
  12. 12.
    G. A. Tkachuk, V. V. Shimov, and O. A. Chikova, “Examining the microstructure of industrial leaded brass blanks for quality control,” Solid State Phenom. 265 (SSP), 348–351 (2017).CrossRefGoogle Scholar
  13. 13.
    G. A. Tkachuk, O. A. Chikova, and V. A. Maltsev, “Examining microstructure of industrial brass blanks with purpose for quality control in respect of defects of technological origin,” IPDME 87, 092027 (2017).Google Scholar
  14. 14.
    N. B. Pugacheva, A. S. Ovchinnikov, and A. V. Lebed’, “Analysis of the defects of industrial brass blanks,” Tsvetn. Met., No. 10, 71–77 (2014).Google Scholar
  15. 15.
    N. B. Pugacheva, A. A. Pankratov, N. Yu. Frolova, and I. V. Kotlyarov, “Structural and phase transformations in α + β brasses,” Russ. Metall. (Metally), No. 3, 239–248 (2006).CrossRefGoogle Scholar
  16. 16.
    A. H. Hameed and A. T. Abed, “Effect of secondary cooling configuration on microstructure of cast in semi- continuous casting of copper and brass,” Appl. Mech. Mater., No. 575, 8–12 (2014).CrossRefGoogle Scholar
  17. 17.
    E.-R. Bagherian, Y. Fan, A. Abdolvand, M. Cooper, and B. Frame, “Investigation of the distribution of lead in three different combinations of brass feedstock,” Int. J. Metalcast., No. 3, 338–341 (2016).Google Scholar
  18. 18.
    A. Momeni, G. R. Ebrahimi, and H. R. Faridi, “Effect of chemical composition and processing variables on the hot flow behavior of leaded brass alloys,” Mater. Sci. Eng. A, No. 626, 1–8 (2015).CrossRefGoogle Scholar
  19. 19.
    A. Muikku, J. Hartikainen, S. Vapalahti, and T. Tiainen, “Experimental work on possibilities to predict casting defects in LPDC brass castings,” Mater. Sci. Forum, No. 508, 561–566 (2006).CrossRefGoogle Scholar
  20. 20.
    G. L. Garagnani, F. Piasentini, and G. V. P. Cesa, “Microstructural and mechanical characterization of foundry copper alloys for artistic applications,” Met. Italiana, No. 98, 39–46 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. A. Tkachuk
    • 1
    Email author
  • O. A. Chikova
    • 1
    • 2
  • V. V. V’yukhin
    • 1
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Ural State Pedagogical UniversityYekaterinburgRussia

Personalised recommendations