Advertisement

Effect of Additional Hydrogen Alloying on the Structure and the Phase Composition of a VTI-4 Intermetallic Alloy

  • 1 Accesses

Abstract

The formation of the structure and the phase composition of a heat-resistant titanium VTI-4 orthorhombic-intermetallic-based alloy is studied in the course of its alloying with hydrogen to different hydrogen contents. The laws of the changes in the phase composition of the hydrogen-containing alloy upon heating to different temperatures are determined. A portion of the VTI-4 alloy–hydrogen phase diagram under the conditions under study is constructed; it demonstrates the location of phase regions as a function of temperature and hydrogen content.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    From here on, the contents of elements and hydrogen are given in wt %.

REFERENCES

  1. 1

    J. Kumpfert, “Intermetallic alloys based on orthorhombic titanium aluminide,” Adv. Eng. Mater. 3 (11), 851–864 (2001).

  2. 2

    V. V. Antipov, “Development strategy of titanium, magnesium, beryllium, and aluminum alloys,” Aviats. Mater. Tehkn., No. S, 157–167 (2012).

  3. 3

    O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, et al., “State, problems, and prospects of the development of heat-resistant titanium alloys for gas-turbine engines,” Trudy VIAM, Electronnyi Nauchn. Zh, No. 3 (2013).

  4. 4

    I. S. Kovalev and V. L. Yur’ev, “Prospects in industrial applying of TiAl-based alloys,” in Annual Scientific and Technical Collective Book, Ed. by V. L. Yur’ev (Elektronnoe Izd. Vagant, Ufa, 2012), pp. 138–149.

  5. 5

    U. Froebel, “Shear localization and cracking during hot-working of gamma-based titanium aluminides” in Proceedings of the 12th World Conference on Titanium Ti-2011 (Science Press Beijing, Beijing, 2012), Vol. 3, pp. 1429–1432.

  6. 6

    M. Paninski, A. Drevermann, G. J. Schmitz, et al., in Ti-2007: Science and Technology (Japan Inst., 2007), Vol. 1, pp. 1059–1062.

  7. 7

    V. Imayev, T. Oleneva, R. Imaeyv, H.-J. Christ, and H.-J. Fecht, “Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2-Ti3Al based alloys subjected to different treatments,” Intermetallics 26, 91–97 (2012).

  8. 8

    A. V. Kuznetsov, G. S. D’yakonov, G. D. Shaisultanov, et al., “Effect of deformation temperature on the microstructure and mechanical behavior of cast TNM-B1 intermetallic alloy based on the γ TiAl titanium aluminide,” Nauchn. Ved. Belgorod. Gos. Univ., Ser. Matem. Fiz. 33 (26), 132–141 (2013).

  9. 9

    S. Tian, Q. Wang, H. Yu, et al. “Microstructure and creep behavior of a high Nb–TiAl intermetallic compound based alloy,” Mater. Sci. Eng. A 614, 176–184 (2014).

  10. 10

    Y. T. Wu, C. T. Yang, and C. H. Koo, “The effect of Nb content on the superplasticity of Ti–25Al–xNb alloy,” Mater. Chem. Phys. 73 (2–3), 212–219 (2002).

  11. 11

    D. Banerjee, A. K. Gogia, T. K. Nandy, et al., “A new ordered orthorhombic phase in a Ti3Al–Nb alloy,” Acta Met. Mater. 36 (4), 871–882 (1988).

  12. 12

    J. Wittenauer, C. Bassi, and B. Walser, “Hot deformation characteristics of Nb-modified Ti3Al,” Scr. Metallurgica 23 (8), 1381–1386 (1989).

  13. 13

    D. Banerjee, “The intermetallic Ti2AlNb,” Prog. Mater. Sci., No. 42, 135–158 (1997).

  14. 14

    Titanium and Titanium Alloys. Fundamentals and Applications, Ed. by C. Leyens and M. Peters (Willey-VCH, Weinheim, 2003).

  15. 15

    S. V. Skvortsova, A. A. Il’in, M. G. Shtutsa, et al., “Structural and technological aspects of preparation of qualitative half-finished products from heat-resistant Ti2AlNb-based intermetallic alloy with a high complex of properties,” Metallofiz. Noveishie Tekhn. 37 (10), 1313–1824 (2015).

  16. 16

    O. Z. Umarova, V. A. Pozhoga, and R. R. Buranshina, “Formation of the structure and mechanical properties of heat-resistant titanium aluminide-based alloy during heat treatment,” Vestn. Mosk. Avats. Inst. 24 (1), 160–169 (2017).

  17. 17

    I. S. Pol’kin, O. N. Grebenyuk, and V. S. Salenkov, “Titanium-based intermetallics,” Tekhnol. Legkikh Splavov, No. 2, 5–15 (2010).

  18. 18

    B. A. Kolachev, A. A. Il’in, V. K. Nosov, and A. M. Mamonov, “Advances in hydrogen technology of titanium alloys,” Tekhn. Legkikh Splavov, No. 3, 10–26 (2007).

  19. 19

    N. A. Nochovnaya, S. V. Skvortsova, D. S. Anishchuk, E. B. Alekseev, P. V. Panin, and O. Z. Umarova, “Elaboration of technology for experimental heat-resistant alloy based on Ti2AlNb intermetallic,” Titan, No. 4, 24–29 (2013).

  20. 20

    E. B. Alekseev, N. A. Nochovnaya, S. V. Skvortsova, P. V. Panin, and O. Z. Umarova, “Determination of technological parameters of deformation of experimental heat-resistant alloy based on Ti2AlNb intermetallic,” Titan, No. 2, 34–39 (2014).

  21. 21

    M. M. Veselkov, N. A. Nochovnaya, S. V. Skvortsova, D. A. Timerbaev, O. Z. Umarova, D. O. Khlobystov, and D. A. Khudyakov, “Method for manufacturing of rod blanks from alloys based on titanium intermetallic with ortho phase,” RF Patent 2644830, 2018.

  22. 22

    A. A. Il’in, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys (Nauka, Moscow, 1994).

  23. 23

    A. G. Illarionov, S. V. Grib, A. A. Popov, et al., “Effect of hydrogen on the formation of the structure and phase composition in the Ti2AlNb-based alloy,” Phys. Met. Metallogr. 109 (2), 142–152 (2010).

  24. 24

    O. G. Khadzhieva, A. G. Illarionov, A. A. Popov, et al., “Effect of hydrogen on the structure formation processes and deformability of alloy based on orthorhombic titanium aluminide,” Titan, No. 4, 19–24 (2012).

  25. 25

    A. A. Popov, Theory of Solid State Transformations: Tutorial (GOU VPO UGTU-UPI, Yekaterinburg, 2004).

  26. 26

    A. A. Il’in, A. M. Mamonov, V. K. Nosov, et al., “On the effect of hydrogen on the diffusion mobility of atoms of β-phase metallic sublattice of titanium alloys,” Metally, No. 5, 99–103 (1994).

  27. 27

    N. V. Kazantseva, S. L. Demakov, and A. A. Popov, “Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. IV. Formation of transformation twins upon the α2O phase transformation,” Phys. Met. Metallogr. 103 (4), 388–394 (2007).

  28. 28

    Titanium Alloys. Metallography of Titanium Alloys, Ed. by S. G. Glazunov and B. A. Kolachev (Metallurgiya, Moscow, 1980).

  29. 29

    S. P. Belov, A. A. Il’in, A. M. Mamonov, et al., “Theoretical analysis of ordering processes in Ti3Al-based alloys. Part II. Effect of hydrogen on the stability of the Ti3Al intermetallic,” Metally, No. 2, 76–80 (1994).

  30. 30

    S. V. Skvortsova, A. A. Il’in, V. V. Zasypkin, et al., “Hydrogen-induced phase and structural transformations in titanium alloys with β-eutectoid stabilizers,” Russ. Metall. (Metally), No. 3, 232–238 (2006).

  31. 31

    A. A. Il’in, S. V. Skvortsova, and A. M. Mamonov, “Controlling the structure of titanium alloys by thermohydrogen treatment,” Fiz. Khim. Mekhan. Mater. 44 (3), 28–34 (2008).

Download references

ACKNOWLEDGMENTS

The studies were performed using the equipment available in the Collective Usage Center for Aviation and Space Materials and Technologies at the Moscow Aviation Institute.

Author information

Correspondence to S. V. Skvortsova.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skvortsova, S.V., Pozhoga, O.Z., Pozhoga, V.A. et al. Effect of Additional Hydrogen Alloying on the Structure and the Phase Composition of a VTI-4 Intermetallic Alloy. Russ. Metall. 2019, 1151–1160 (2019). https://doi.org/10.1134/S0036029519110107

Download citation

Keywords:

  • titanium intermetallic
  • heat-resistant ortho alloy
  • structure
  • phase composition
  • hydrogenating annealing