Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 11, pp 1167–1177 | Cite as

High-Temperature β-NiAl + γ'-Ni3Al + γ-Ni Alloys of the Ni–Al–Co System

  • K. B. PovarovaEmail author
  • O. A. Bazyleva
  • A. A. Drozdov
  • A. E. Morozov
  • A. V. Antonova
  • V. P. Sirotinkin
  • M. A. Bulakhtina
  • E. G. Arginbaeva
  • N. A. Alad’ev
Article

Abstract

The oxidation resistance of cast β-NiAl + γ'-Ni3Al + γ-Ni alloys of the Ni–Al–Co system in air at 1100, 1200, and 1300°C for 100 h is studied. An increase in the cobalt content from ≤5 at % (in complexly alloyed high-temperature γ' + γ VKNA alloys with ~17 at % Al and Cr, Mo, and W) to 10 at % in chromium-free β + γ' + γ alloys with 26–29 at % Al and 0.26 at % Ta, Re, Hf, and Y is shown to increase the heat resistance due to an increase in the aluminum content, an increase in the plasticity of scale, and the prevention of its exfoliation. The oxidation resistance of the base alloy decreases because of an increase in the cobalt content in the base NIAL-1 alloy from 10 to 16 at % and the introduction of 4.25 at % Cr and 0.16 at % Y of Hf. Its oxidation resistance at 1300°C, which was estimated from the weight increment per unit surface in 100 h corresponds to that of the well-known VKNA/VIN γ' + γ alloys at 1100°C. The oxidation resistance of the alloys with 16 at % Co or 4.25 at % Cr at 1100 and 1200°C is at the level of the VKNA/VIN alloys at 1000°C. The new β + γ' + γ alloys, which have higher oxidation resistance than structural high-temperature γ' + γ alloys and lower high-temperature strength, can be considered as heat- and oxidation-resistant coating-free alloys for short-term operation at 1100°C.

Keywords:

nickel aluminides solidification oxidation oxide structure heat resistance properties 

Notes

ACKNOWLEDGMENTS

We thank Yu.A. Bondarenko, A.B. Echin, A.V. Shestakov (All-Russia Research Institute of Aviation Materials) and A.A. Ashmarin (Baikov Institute of Metallurgy and Materials Science) for their assistance with this work.

FUNDING

This work was performed in terms of state assignment no. 075-00746-19-00 and was supported by the Russian Foundation for Basic Research (project nos. 16-03-00721a, 19-03-00852a).

REFERENCES

  1. 1.
    N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel, Ed. by E. N. Kablov (VIAM, Moscow, 2018).Google Scholar
  2. 2.
    Yu. R. Kolobov, E. N. Kablov, E. V. Kozlov, N. A. Koneva, K. B. Povarova, G. P. Grabovetskaya, V. P. Buntushkin, O. A. Bazyleva, S. A. Muboyadzhyan, and S. A. Budinovskii, Structure and Properties of Intermetallic Compounds with Nanophase Strengthening, Ed. by E. N. Kablov and Yu. R. Kolobov (MISiS, Moscow, 2008).Google Scholar
  3. 3.
    K. B. Povaova, A. A. Drozdov, O. A. Bazyleva, A. E. Morozov, A. V. Antonova, Yu. A. Bondarenko, M. A. Bulakhtina, A. A. Ashmarin, E. G. Arginbaeva, and N. A. Alad’ev, “Structural heat-resistant β-NiAl + γ'-Ni3Al alloys of the Ni–Al–Co system: I. Solidification and structure,” Russ. Metall. (Metally), No. 9, 696–705 (2017).Google Scholar
  4. 4.
    K. B. Povarova, A. A. Drozdov, O. A. Bazyleva, A. E. Morozov, A. V. Antonova, Yu. A. Bondarenko, M. A. Bulakhtina, E. G. Arginbaeva, and A. V. Amezhnov, “Influence of the cobalt concentration and chromium alloying on the structure of (β-NiAl + γ'-Ni3Al + γ-Ni) Ni-Al-Co superalloys,” Russ. Metall. (Metally), No. 7, 645–650 (2018).CrossRefGoogle Scholar
  5. 5.
    A. A. Drozdov, O. A. Skachkov, P. O. Zhukov, and T. A. Berezina, “Influence of smelting on the structure and properties of an Ni3Al intermetallie alloy,” Steel in Translation 47 (4), 280–286 (2017).CrossRefGoogle Scholar
  6. 6.
    A. A. Drozdov, K. B. Povarova, O. A. Bazyleva, A. E. Morozov, A. V. Antonova, E. G. Arginbaeva, M. A. Bulakhtina and A. A. Ashmarin, “Effect of the cobalt content and chromium aloying on the structure of the scale formed on structural β-NiAl + γ'-Ni3Al + γ-Ni alloys (Ni–Al–Co system) at 1300°C,” Russ. Metall. (Metally), No. 11, 1074–1080 (2018).CrossRefGoogle Scholar
  7. 7.
    J. K. Kutnzly and D. L. Douglass, “The oxidation mechanism of Ni3Al containing yttrium,” Oxid. Metals 8 (3), 139–178 (1974).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. B. Povarova
    • 1
    Email author
  • O. A. Bazyleva
    • 2
  • A. A. Drozdov
    • 1
    • 3
  • A. E. Morozov
    • 1
  • A. V. Antonova
    • 1
  • V. P. Sirotinkin
    • 1
  • M. A. Bulakhtina
    • 1
  • E. G. Arginbaeva
    • 2
  • N. A. Alad’ev
    • 1
  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  2. 2.All-Russia Research Institute of Aviation MaterialsMoscowRussia
  3. 3.Bardin Central Research Institute for Ferrous MetallurgyMoscowRussia

Personalised recommendations