Nanoindentation Study of the Effect of Low-Temperature Ion Irradiation on the Hardness of a Ferritic–Martensitic EK-181 Steel

  • 1 Accesses


The hardness of a ferritic–martensitic steel EK-181 after ion irradiation to a maximum damaging dose of ~50 dpa in the temperature range 250–400°C is investigated. Nanoindentation is used to measure the mechanical properties. The hardnesses of the layer damaged by ions and that of the undamaged bulk material are found. At temperatures below 300°C, softening at a dose below 10 dpa and hardening at high doses of ~50 dpa are observed. Hardening is detected over the entire dose range at 400°C. The maximum hardness of the sample irradiated to ~50 dpa at 400°C is 1.7 GPa.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).

  2. 2

    M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, and H. Takeuchi, “Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique,” J. Nucl. Mater. 307311, 260–265 (2002).

  3. 3

    H. Ogiwara, A. Kohyama, H. Tanigawa, and H. Sakasegawa, “Irradiation-induced hardening mechanism of ion irradiated JLF-1 to high fluencies,” Fus. Eng. Des. 81, 1091–1097 (2006).

  4. 4

    C. Petersen, A. Povstyanko, V. Prokhorov, A. Fedoseev, O. Makarov, and B. Dafferner, “Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’,” J. Nucl. Mater. 367370, 544–549 (2007).

  5. 5

    A. G. Ioltukhovskiy, A. I. Blokhin, N. I. Budylkin, V. M. Chernov, M. V. Leont’eva-Smirnova, E. G. Mironova, E. A. Medvedeva, M. I. Solonin, S. I. Porollo, and L. P. Zavyalsky “Material science and manufacturing of heat-resistant reduced-activation ferritic–martensitic steels for fusion,” J. Nucl. Mater. 283287, 652–656 (2000).

  6. 6

    Xiang Liu, Yinbin Miao, Meimei Li, M. A. Kirk, and S. A. Maloy, “Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91,” J. Nucl. Mater. 490, 305–316 (2017).

  7. 7

    C. Topbasi, A. T. Motta, and M. A. Kirk, “In situ study of heavy ion induced radiation damage in HC616 (P92) alloy,” J. Nucl. Mater. 425, 48–53 (2012).

  8. 8

    E. A. Kuleshova, B. A. Gurovich, Z. V. Bukina, A. S. Frolov, D. A. Maltsev, E. V. Krikun, D. A. Zhurko, and G. M. Zhuchkov, “Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of 50–400°C,” J. Nucl. Mater. 490, 247–259 (2017).

  9. 9

    E. H. Lee, J. D. Hunn, G. R. Rao, R. L. Klueh, and L. K. Mansur, “Tripleion beam studies of radiation damage in 9Cr ± 2WVTa ferritic/martensitic steel for a high power spallation neutron source,” J. Nucl. Mater. 271272, 385–390 (1999).

  10. 10

    Y. Serruys, M.-O. Ruault, P. Trocellier, S. Miro, A. Barbu, L. Boulanger, O. Kaïtasov, S. Henry, O. Leseigneur, P. Trouslard, S. Pellegrino, and S. Vaubaillon, “JANNUS: experimental validation at the scale of atomic modeling,” Physique 9, 437–444 (2008).

  11. 11

    S. J. Zinkle and L. L. Snead, “Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations,” Scr. Mater. 143, 154–160 (2018).

  12. 12

    S. Rogozhkin, A. Bogachev, O. Korchuganova, A. Nikitin, N. Orlov, A. Aleev, A. Zaluzhnyi, M. Kozodaev, T. Kulevoy, B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, M. Klimenkov, M. Heilmaier, J. Wagner, and S. Seils, “Nanostructure evolution in ODS steels under ion irradiation,” Nucl. Mater. Energy. 9, 66–74 (2016).

  13. 13

    S. V. Rogozhkin, A. A. Nikitin, A. A. Khomich, N. A. Iskandarov, V. V. Khoroshilov, A. A. Bogachev, A. A. Luk’yanchuk, O. A. Raznitsyn, A. S. Shutov, P. A. Fedin, R. P. Kuibida, T. V. Kulevoy, A. L. Vasil’ev, M. Yu. Presnyakov, K. S. Kravchuk, and A. S. Useinov, “Simulation experiments on heavy ion beams for modeling radiation damage of structural materials of nuclear and thermonuclear power plants,” Yad. Fiz. Inzhiniring 3, 139–152 (2019).

  14. 14

    W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).

  15. 15

    E. G. Herbert, W. C. Oliver, and G. M. Pharr, “Nanoindentation and the dynamic characterization of viscoelastic solids,” Phys. D: Appl. Phys. 41, 074021 (2008).

  16. 16

    S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, et al., “Effect of irradiation by heavy ions on the nanostructure of perspective materials for nuclear power plants,” Phys. Met. Metallogr. 13, 200–211 (2012).

  17. 17

    T. V. Kulevoy, B. B. Chalyhk, P. A. Fedin, A. L. Sitnikov, A. V. Kozlov, R. P. Kuibeda, S. L. Andrianov, N. N. Orlov, K. S. Kravchuk, S. V. Rogozhkin, A. S. Useinov, E. M. Oks, A. A. Bogachev, A. A. Nikitin, N. A. Iskandarov, and A. A. Golubev, “Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources,” Rev. Sci. Instr. 87, 02C102 (2016).

  18. 18

    J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—the stopping and range of ions in matter,” Nucl. Instr. Meth. Phys. Res. Sec. B: Beam Inter. Mater. Atoms 268, 1818–1823 (2010).

  19. 19

    R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, “On the use of SRIM for computing radiation damage exposure,” Nucl. Instr. Met. Phys. Res. Sec. B: Beam Inter. Mater. Atoms 310, 75–80 (2013).

  20. 20

    K. Durst, B. Backes, O. Franke, and M. Göken, “Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations,” Acta Mater. 54, 2547–2555 (2006).

  21. 21

    G. M. Pharr, E. G. Herbert, and Y. Gao, “The indentation size effect: a critical examination of experimental observations and mechanistic interpretations,” Ann. Rev. Mater. Res. 40, 271–292 (2010).

  22. 22

    W. D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids 46, 411–425 (1998).

  23. 23

    A. Kareera, A. Prasitthi payong, D. Krumwiede, D. M. Collins, P. Hosemann, and S. G. Roberts, “An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves,” Nucl. Mater. 498, 274–281 (2018).

  24. 24

    Y. Huang, F. Zhang, K. C. Hwang, W. D. Nix, G. M. Pharr, and G. Feng, “A model of size effects in nano-indentation,” J. Mech. Phys. Solids 54, 1668–1686 (2006).

  25. 25

    S. V. Rogozhkin, V. S. Ageev, A. A. Aleev, A. G. Zaluzhnyi, M. V. Leont’eva-Smirnova, and A. A. Nikitin, “Tomographic atom-probe analysis of temperature-resistant 12%-chromium ferritic–martensitic steel EK‑181,” Phys. Met. Metallogr. 108, 579–585 (2009).

  26. 26

    S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, N. A. Iskandarov, A. A. Nikitin, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Nanoscale study of ferritic–martensitic steel Rusfer EK-181 after various thermal treatments,” Inorg. Mater.: Appl. Res. No. 3, 129–134 (2012).

  27. 27

    S. V. Rogozhkin, N. A. Iskandarov, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, T. V. Kulevoi, V. V. Chalykh, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Investigation of the influence of irradiation with Fe ions on the nanostructure of ferritic martensitic steel EK-181,” Inorg. Mater.: Appl. Res., No. 4, 426–430 (2013).

Download references


Irradiation and atom-probe tomography analysis were performed at the Center of the Collaborative Access KAMIKS (, Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute; nanoindantation was carried out at the Technological Institute for Superhard and Novel Carbon Materials (


This work was supported by the Russian Scientific Foundation, project no. 17-19-01696.

Author information

Correspondence to A. A. Nikitin.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A.A., Rogozhkin, S.V., Kulevoi, T.V. et al. Nanoindentation Study of the Effect of Low-Temperature Ion Irradiation on the Hardness of a Ferritic–Martensitic EK-181 Steel. Russ. Metall. 2019, 1184–1189 (2019).

Download citation


  • ferritic–martensitic steel
  • ion irradiation
  • radiation damage simulation
  • hardness
  • nanoindentation