Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 11, pp 1224–1230 | Cite as

Monitoring of the Metal Surface Temperature during Laser Processing

  • V. A. FiragoEmail author
  • W. Wojcik
  • M. Sh. Dzhunisbekov
Article

Abstract

The principles of monitoring the laser processing of metals are considered; the design and the main parameters of the spectrophotometer designed on the base of an optical-fiber AvaSpec 2048 spectrometer with the spectral range 380–1050 nm are presented. The technique of its calibration is discussed and the obtained spectral sensitivity is reported. The measured spectra of optical and near IR radiation that forms in the contact region of CO2 laser radiation (wavelength 10.2 μm, power 1 kW) with the steel surface are presented. The problems of selecting the spectral portion in which the uncertainty of measuring temperature during contactless technological monitoring of high-temperature laser processes using thermographic devices will be minimal are discussed.

Keywords:

technological monitoring of laser processes spectrophotometry high-temperature thermography spectral radiance of thermal radiation calibration of spectrophotometer 

Notes

REFERENCES

  1. 1.
    J. Dowden, The Theory of Laser Materials Processing (Springer Series in Materials Sciences, 2009), Vol. 119.CrossRefGoogle Scholar
  2. 2.
    C. Meier, R. Penny, Y. Zoua, J. Gibbs, et al., “Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation and experimentation,” Ann. Rev. Heat Trans. (2018). https://doi.org/10.1615/AnnualRevHeattransfer.2018019042CrossRefGoogle Scholar
  3. 3.
    H. Helvajian, “Laser material processing in the micro and nanometer domains: past, present and possibly the future,” J. Laser Micro/Nanoengineering 4 (1), 1–6 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Zain-ul-abdein, D. Nelias, J. Jullien, and D. Deloison, “”Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application,” J. Mater. Proc. Technol. 209, 2907–2917 (2009).CrossRefGoogle Scholar
  5. 5.
    S. Ostuni, P. Leo, G. Gasalino, “FEM simulation of dissimilar aluminum titanium fiber laser welding using 2D and 3D Gaussian heat sources,” Metals 7 (8), 307 (2017).CrossRefGoogle Scholar
  6. 6.
    X. He and T. Debroy, “Probing temperature during laser spot welding from vapor composition and modeling,” J. Appl. Phys. 94 (10), 6949–6958 (2003).CrossRefGoogle Scholar
  7. 7.
    A. N. Cherpanov and V. P. Shapeev, “Modeling of laser welding of flat parts using modifying nanopowders,” Termophys. Aeromech. 20 (2), 237–250 (2013).CrossRefGoogle Scholar
  8. 8.
    V. I. Bogdanovich, M. G. Giorbelidzhe, A. V. Sotov, et al., “Mathematical modeling of powder melting processes in the selective laser melting technology,” Izv. Samara Nauchn. Tsentr RAS 19 (4), 105–114 (2017).Google Scholar
  9. 9.
    L. S. Petrova, “Mathematical modeling of processes of heating of piece-homogeneous bodies with allowance for the heat flux relaxation,” Naukovedenie 9 (1), (2017). http://naukovedenie.ru/PDF/38TVN117.pdf.Google Scholar
  10. 10.
    M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with a Material (Power Optics). Part I: Absorption of Laser Radiation in a Material: Abstract of Lectures, Ed. by V. P. Veiko (SPbGU ITMO, St. Petersburg, 2008).Google Scholar
  11. 11.
    M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with a Material (Power Optics). Part II: Laser Heating and Fracture of Materials: Textbook, Ed. by V. P. Veiko (NIU ITMO, St. Petersburg, 2014).Google Scholar
  12. 12.
    T. Sibillano, A. Ancona, V. Berardi, and P. Lugara, “A real time spectroscopic sensor for monitoring laser welding processes,” Sensors 9 (5), 3376–3385 (2009).CrossRefGoogle Scholar
  13. 13.
    V. A. Firago, “Principles of contactless monitoring parameters of laser processing of structural materials,” in Proceedings of X International Scientific-Engineering Conference on Quantum Electronics (Minsk, 2015), pp. 202–205.Google Scholar
  14. 14.
    I. Zhirnov, D. V. Kotoban, and A. V. Gusarov, “Evaporation-induced gas-phase flows at selective laser melting,” Appl. Phys. A 124 (2), 9 (2018).CrossRefGoogle Scholar
  15. 15.
    I. Zhirnov, C. Protasov, D. Kotoban, A. V. Gusarov, and T. Tarasova, “New approach of true temperature restoration in optical diagnostics using IR-camera,” J. Therm. Spray Technol. 26 (4), 648–660 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Dagel, G. Grossetete, and O. Danny, Measurement of Laser Weld Temperature for 3D Model Input (Sandia National Laboratories, New Mexico, 2016).CrossRefGoogle Scholar
  17. 17.
    D. You, X. Gao, and S. Katayama, “Review of laser welding monitoring,” Sci. Technol. Weld. Join. 19 (3), 181–201 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Stavridis, J. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Intern. J. Advanc. Manufact. Technol. 94 (5–8), 1825–1847 (2017).CrossRefGoogle Scholar
  19. 19.
    V. Firago, and W. Wojcik, “High-temperature three-colour thermal imager,” Przeglad Electrotechn. 91 (2), 208–214 (2015).Google Scholar
  20. 20.
    V. Firago, W. Wojcik, and I. Volkova, “The principles of reducing temperature measurement uncertainty of modern thermal imaging systems,” Przeglad Electrotechn. 92 (8), 117–120 (2016).Google Scholar
  21. 21.
    A. N. Magunov, Spectral Pyrometry (Fizmatlit, Moscow, 2012).Google Scholar
  22. 22.
    V. A. Firago, I. A. Sakovich, and A. N. Sobchuk, “Spectrophotometer for determination of the emission spectrum forming in the region of action of power laser radiation,” in Proceedings of XI International Scientific-Engineering Conference on Quantum Electronics (Minsk, 2017), pp. 177–179.Google Scholar
  23. 23.
    V. A. Firago, A. G. Sen’kov, E. N. Savkova, and T. V. Golub, “Pyrometric monitoring of temperature of heated metals at mechanical-engineering enterprises,” Control. Diagnost., No. 5, 17–25 (2011).Google Scholar
  24. 24.
    Emitting Properties of Solids, Ed. by A.E. Sheindlin (Energiya, Moscow, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Firago
    • 1
    Email author
  • W. Wojcik
    • 2
  • M. Sh. Dzhunisbekov
    • 3
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Lublin University of TechnologyLublinPoland
  3. 3.Taraz State UniversityTarazKazakhstan

Personalised recommendations