Russian Metallurgy (Metally)

, Volume 2019, Issue 11, pp 1205–1211 | Cite as

Criteria for the Rational Copper Infiltration of a Porous Refractory Skeleton during the Production of a W–Cu Pseudoalloy

  • G. G. BondarenkoEmail author
  • A. P. KorzhavyiEmail author
  • V. V. PrasitskiiEmail author
  • G. V. PrasitskiiEmail author


The solidification of liquid copper in a porous refractory tungsten skeleton subjected to infiltration and subsequent cooling under various conditions, including a standard through-type furnace cooler, is studied. The pores in the refractory skeleton are shown to be completely filled with liquid copper in the presence of excess melt up to the end of infiltration. Heat insulation is found to be a practical method to retain excess liquid copper up to its solidification inside the porous refractory skeleton. Standard Termoizol-1400 is used as a heat insulator. At a heat insulator wall thickness of 10.8 mm, the excess liquid copper layer thickness is 0.2 mm up to the end of infiltration of a W–Cu pseudoalloy. Criteria are proposed for rational infiltration.


liquid copper infiltration porous refractory skeleton pseudoalloys 



  1. 1.
    N. I. Kachalin, V. Yu. Belov, G. A. Tikhii, et al., “Tungsten–copper pseudoalloy as arcing contacts for modern sulphur hexafluoride switches,” Zagot. Proizv. Mashinostr., No. 1, 35–43 (2007).Google Scholar
  2. 2.
    D. Zhu, H. Wu, Y. Yuan, and K. Kuang, “Process for making copper tungsten and copper molybdenum composite electronic packaging materials,” US Patent 2010092327, 2010.Google Scholar
  3. 3.
    A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave sintering of refractory metals/alloys : W, Mo, Re, W–Cu, W–Ni–Cu and W–Ni–Fe alloys,” J. Microwave Power Electromagn. Energy 44 (1), 28–44 (2010). Anish.CrossRefGoogle Scholar
  4. 4.
    V. N. Kolokol’tsev, I. V. Borovitskaya, L. I. Ivanov, V. Ya. Nikulin, M. M. Lyakhovitskii, and V. V. Paramonova, “Structure and IV characteristics of the copper–tungsten electric contacts produced on a Plazmenny Fokus device,” Perspekt. Mater., No. 6, 48–53 (2010).Google Scholar
  5. 5.
    M. Rosinski, E. Fortuna, A. Michalski, Z. Pakiela, and K. Kurzydlowski, “W/Cu composites produced by pulse plasma sintering technique (PPS),” Fus. Eng. Des. 82, 2621–2626 (2007).CrossRefGoogle Scholar
  6. 6.
    C. P. Wang, L. C. Lin, L. S. Xu, W. W. Xu, J. P. Song, X. J. Liu, and Y. Yu, “Effect of blue tungsten oxide on skeleton sintering and infiltration of W–Cu composites,” Intern. J. Refract. Met. Hard Mater. 41, 236–240 (2013).CrossRefGoogle Scholar
  7. 7.
    L. E. Bodrova, E. Yu. Goida, E. A. Pastukhov, and V. P. Chentsov, “Optimization of the liquid-phase production of Cu–W composite alloys,” Perspekt. Mater., No. 7, 54–61 (2017).Google Scholar
  8. 8.
    G. G. Bondarenko, Ya. Ya. Udris, and V. L. Yakushin, “On behaviour of W–Cu composition as a candidate diverter material under irradiation by high intensive hydrogen plasma,” Fus. Eng. Des. 5152, 81–84 (2000).CrossRefGoogle Scholar
  9. 9.
    V. A. Sidorov and S. V. Kataev, “Structural materials with a high thermal conductivity for heat removal in electronic engineering devices,” Electron. Tekhn., Ser. 2. Polupr. Pribory, No. 2 (227), 81–90 (2011).Google Scholar
  10. 10.
    V. A. Ponomarev and N. V. Yarantsev, Powder Composite Materials for Electronic Engineering Devices, Ed. by A. P. Korzhavyi (Izd. MGTU, Moscow, 2014).Google Scholar
  11. 11.
    V. I. Strelov, Yu. N. Bendryshev, and V. G. Kosushkin, “Highly effective next-generation heat sinks for electronic devices,” Prikl. Fiz., No. 5, 86–91 (2016).Google Scholar
  12. 12.
    L. I. Tuchinskii, Impregnation-Produced Composite Materials (Metallurgiya, Moscow, 1986).Google Scholar
  13. 13.
    A. P. Korzhavyi, V. V. Prasitskii, and G. V. Prasitskii, “Heat-removing and emitting compositions based on W and Pd powders: a study of the production processes and structures,” Metal Sci. Heat Treat. 60 (3–4), 200–205 (2018).CrossRefGoogle Scholar
  14. 14.
    Yu. P. Trykov, “Combined processes of production of composite materials and articles,” Nauka Proizv., No. 1, 20–23 (2010).Google Scholar
  15. 15.
    V. Yu. Skiba, V. N. Pushnin, I. A. Erokhin, and D. Yu. Kornev, “Analysis of the state of stress in a material during high-energy heating by high-frequency currents,” Obrab. Metal. (Tekhnol., Oborud., Instrum.), No. 3, 90–102 (2014).Google Scholar
  16. 16.
    M. V. Inyukhin, V. V. Prasitskii, and R. I. Khabibulin, “Method of producing articles based on tungsten–copper and molybdenum–copper pseudoalloys,” RF Patent 2460610, 2012.Google Scholar
  17. 17.
    S. I. Isaev, I. A. Kozhinov, V. I. Kofanov, et al., Theory of Heat-and-Mass Transfer: Tutorial for Institutes of Higher Education, 3rd ed. (Izd. MGTU, Moscow, 2018).Google Scholar
  18. 18.
    A. K. Churusov, G. G. Zaitsev, and A. A. Konyushenkov, “Approximate calculation of the strength of bilk-reinforced carbon composites with 3D and 4D-L structures,” Perspekt. Mater., No. 7, 71–79 (2014).Google Scholar
  19. 19.
    K. V. Glagolev and A. N. Morozov, Physical Thermodynamics: Tutorial, 2nd ed. (Izd. MGTU, Moscow, 2007).Google Scholar
  20. 20.
    G. N. Kuvyrkin and A. K. Lepeshkin, “Mathematical simulation of the solidification of metals under high-intensity cooling,” Vestn. MGTU, Ser. Estestv. Nauki, No. 3, 42–53 (2007).Google Scholar
  21. 21.
    B. E. Vintaikin, Solid State Physics: Tutorial, 2nd ed. (Izd. MGTU, Moscow, 2008).Google Scholar
  22. 22.
    V. P. Strogalev and I. O. Tolkacheva, Imitation Simulation: Tutorial (Izd. MGTU, Moscow, 2017).Google Scholar
  23. 23.
    K. B. Povarova, A. A. Drozdov, Yu. A. Bondarenko, et al., “Effect of directional solidification on the structure and properties of Ni3Al-based alloy single crystals alloyed with W, Mo, Cr, and REM,” Russ. Metall. (Metally), No. 4, 545–550 (2014).Google Scholar
  24. 24.
    B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Physical Metallurgy and Heat Treatment of Nonferrous Metals and Alloys, 3rd ed. (Izd. MISiS, Moscow, 2001).Google Scholar
  25. 25.
    Units of Measurement and Designations of Physicotechnical Quantities: A Handbook (Nedra, Moscow, 1966).Google Scholar
  26. 26.
    M. A. Ioffe, Theory of Casting Processes: Tutorial (Izd. SZTU, St. Petersburg, 2009), Vol. 2.Google Scholar
  27. 27.
    A. I. Veinik, Technical Thermodynamics and Fundamentals of Heat Transfer, 2nd ed. (Metallurgiya, Moscow, 1965).Google Scholar
  28. 28.
    A. P. Korzhavyi and G. V. Prasitskii, “Method of producing articles from tungsten–copper pseudoalloys,” RF Patent 2607478, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.Bauman State Technical UniversityKalugaRussia

Personalised recommendations