Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 974–980 | Cite as

Estimation of the Local State of Stress and Strains in Stress Concentration Zones in a Wide Strain Range

  • N. A. Makhutov
  • D. O. ReznikovEmail author


The specific features of various approximate analytical methods for estimating the state of stress in the zone of stress concentration of stresses and strains, including the Neuber, Hardrath–Ohman, and Molski–Glinka methods, are compared. A method for the modification of the methods to extend the range of the strains under study up to fracture is proposed.


stress concentration strain concentration local stresses local strains fracture 



This work was supported by the Russian Foundation for Basic Research, project no. 16-58-48008 IND_omi.


  1. 1.
    N. A. Makhutov, Strain Fracture Criteria and Calculation of the Structural Units to Strength (Mashinostroenie, Moscow, 1981).Google Scholar
  2. 2.
    N. A. Makhutov, M. M. Gadenin, V. V. Moskvichev, et al., Local Criteria of Strength, Service Life, and Robustness of Aeronautical Constructions (Nauka, Novosibirsk, 2017).Google Scholar
  3. 3.
    J. A. Bannantine, J. J. Comer, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis (Prentice Hall, 1990).Google Scholar
  4. 4.
    S. S. Manson and G. R. Halford, Fatigue and Durability of Structural Materials (ASM International, 2006).Google Scholar
  5. 5.
    A. Ince, “Numerical validation of computational stress and strain analysis model for notched components subjected to non-proportional loadings”, Theor. Appl. Fract. Mech. 84, 26–37 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Ince and G. Glinka, “A numerical method for elasto-plastic notch-root stress–strain analysis,” J. Strain Anal. 48 (4), 229–244 (2013).CrossRefGoogle Scholar
  7. 7.
    Y.-L. Lee, M. E. Barkey, and K. Hong-Tae, Metal Fatigue Analysis Handbook (Butterworth-Heinemann, 2012).Google Scholar
  8. 8.
    H. Neuber, “Theory of stress concentration for shear-strained prismatic bodies with arbitrary nonlinear stress–strain law,” J. Appl. Mech. 28 (4), 544–550 (1961).CrossRefGoogle Scholar
  9. 9.
    A. Ince and D. Bang, “Deviatoric Neuber method for stress and strain analysis at notches under multiaxial loadings,” Int. J. Fatig. 102, 229–240 (2017).CrossRefGoogle Scholar
  10. 10.
    D. Ye, S. Matsuoka, N. Suzuki, and Y. Maeda, “Further investigation of Neuber’s rule and the equivalent strain energy density (ESED) method,” Int. J. Fatig. 26, 447–455 (2004).CrossRefGoogle Scholar
  11. 11.
    R. Adibi-Asl and R. Seshadri, “Unified approach for notch stress strain conversion rules,” J. Pres. Ves. Technol. 135 (4), 041203 (1–9) (2013).Google Scholar
  12. 12.
    T. Li, J. Zheng, and Z. Chen, Description of Full-Range Strain Hardening Behavior of Steels (Springer Plus, 2016), Vol. 5.Google Scholar
  13. 13.
    G. Härkegård and T. Mann, “Neuber prediction of elastoplastic strain concentration in notched tensile specimens under large-scale yielding,” J. Strain Anal. Eng. Design 38, 79–94 (2003).CrossRefGoogle Scholar
  14. 14.
    W. Ramberg and W. Osgood, Description of Stress–Strain Curves by Three Parameters: NASA Technical Note N 902 (NASA’s STI Facility, Washington, 1943).Google Scholar
  15. 15.
    P. Klesnil and P. Lukas, Fatigue of Metallic Materials (Elsevier, Amsterdam, 1992), Vol. 71.Google Scholar
  16. 16.
    K. Molski and G. Glinka, “A method of elastoplastic stress and strain calculation at a notch root,” Mater. Sci. Eng. 50, 93–100 (1981).CrossRefGoogle Scholar
  17. 17.
    T. Seeger and P. Heuler, “Generalized application of Neuber’s rule,” J. Test. Eval. 8, 199–204 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Blagonravov Institute of Engineering Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations