Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1009–1014 | Cite as

Effect of the Thermomechanical Compacting Conditions on the Electrical Conductivity of an Al2O3/Graphene Composite Material

  • A. G. ZholninEmail author
  • A. V. Tenishev
  • V. V. Stolyarov

Abstract—The influence of the graphene content (up to 2 wt %) and the sintering conditions on the temperature dependence of the electrical resistance of an Al2O3/graphene composite material in the temperature range 20–1600°C is studied. The composite material is fabricated from a mixture of initial powders by spark plasma sintering and hot pressing. The electrical resistance of the compacted material is found to depend on the pressing force and a heating method. The composite material prepared by hot pressing has the minimum electrical resistivity (0.9 Ω m).

Keywords: nanocomposite material corundum graphene electrical resistance spark plasma sintering 



This work was supported by the Ministry of Education and Science of the Russian Federation for measuring the electrical resistance (project no. 11.1957.2017/4.6), by the Russian Science Foundation for the SPS preparation of the composite compacts (project no. 16-19-10213), and by National Research Nuclear University MEPhI in terms of the project of increasing the competitive ability of the leading Russian institutes of higher education (project no. 5-100).


  1. 1.
    I. E. Reimanis, “A review of issues in the fracture of interfacial ceramics and ceramic composites,” Mater. Sci. Eng., A 237, 159–167 (1997).CrossRefGoogle Scholar
  2. 2.
    T. He, J. Li, L. Wang, J. Zhu, and W. Jiang, “Preparation and consolidation of alumina/graphene composite powders,” Mater. Trans. 50 (4), 749–751 (2009).CrossRefGoogle Scholar
  3. 3.
    H. J. Kim, S.-M. Lee, Y.-S. Oh, Y. H. Yang, Y. S. Lim, D. H. Yoon, C. Lee, J.-Y. Kim, and R. S. Ruoff, “Unoxidized graphene/alumina nanocomposite: fracture and wear resistance effects of graphene on alumina matrix,” Sci. Reports 4, art. 5176 (2014).Google Scholar
  4. 4.
    B. Yazdania, Y. Xia, I. Ahmad, and Y. Zhua, “Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites,” J. Eur. Ceram. Soc. 35 (1), 179–186 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Fan, L. Wang, J. Li, J. Li, S. Sun, F. Chen, L. Chen, and W. Jiang, “Preparation and electrical properties of graphene nanosheet/ Al2O3 composites,” Carbon 48, 1743–1749 (2010).CrossRefGoogle Scholar
  6. 6.
    Y. Fan, W. Jiang, and A. Kawasaki, “Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type,” Adv. Funct. Mater. 22, 3882–3889 (2012). CrossRefGoogle Scholar
  7. 7.
    M. Drozdova, I. Hussainova, D. Pérez-Coll, M. Aghayan, R. Ivanov, and M. A. Rodriguez, “A novel approach to electroconductive ceramics filled by graphene covered nanofibers,” Mater. Design 90, 291–298 (2016). CrossRefGoogle Scholar
  8. 8.
    M. Drozdova, “Electroconductive oxide ceramics with hybrid graphenated nanofibers,” Thesis DPh. Tallin, Tallinn University of Technology, 2017.Google Scholar
  9. 9.
    A. Centeno, V. G. Rocha, B. Alonso, A. Ferndndez, C. F. Gutierrez- Gonzalez, R. Torrecillas, and A. Zurutuza, “Graphene for tough and electroconductive alumina ceramics,” J. Eur. Ceram. Soc. 33, 3201–3210 (2013).CrossRefGoogle Scholar
  10. 10.
    O. Jankovskу́, P. Šimek, D. Sedmidubskу́, Š. Huber, M. Pumer, and Z. Sofer, “Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3/graphene,” Royal Soc. Chem. Adv. 15, 7418–7424 (2014).Google Scholar
  11. 11.
    K. Ahmad, W. Pan, and H. Wu, “High performance alumina based graphene nanocomposites with novel electrical and dielectric properties,” Royal Soc. Chem. Adv. 42 (5), 336071–336078 (2015).Google Scholar
  12. 12.
    V. V. Stolyarov, A. A. Misochenko, A. G. Zholnin, E. G. Grigoriev, and E. A. Klyatskina, “Structure and properties of Al2O3/graphene nanocomposite processed by spark plasma sintering,” Mater. Sci. Eng. 218, 012017 (2017). CrossRefGoogle Scholar
  13. 13.
    P. Yu. Peretyagin, “Increasing the service properties of lathe tools equipped with ceramic cutting plates during the finish turning of a high-temperature alloy using graphene and spark plasma sintering,” Candidates’s Dissertation in Engineering (Moscow, 2017). http://Автореферат%20(Перетягин).pdf.Google Scholar
  14. 14.
    Materials in Mechanical Engineering. Choice and Application: A Handbook. Vol. 5. Nonmetallic Materials, Ed. by I. V. Kudryavtsev (Mashinostroenie, Moscow, 1969).Google Scholar
  15. 15.
    A. G. Zholnin, I. V. Kovaleva, P. N. Medvedev, E. G. Grigor’ev, E. A. Olevskii, M. G. Isaenkova, and P. L. Dobrokhotov, “Free sintering of aluminum delta- and alpha-oxide nanopowders subjected to magnetic pulsed pressing,” Fiz. Khim. Obrab. Mater., No. 1, 53–63 (2016).Google Scholar
  16. 16.
    V. V. Stolyarov, A. G. Zholnin, and E. A. Klyatskina, “Structure and properties of the Al2O3 + Γ composite material fabricated by spark plasma sintering,” in Advanced Materials and Technologies, Ed. by V. V. Klubovich (UO VGTU, Vitebsk, 2017), Vol. 1, pp. 92–107.Google Scholar
  17. 17.
    M. Yu, S. Grasso, R. McKinnon, T. Saunders, and M. J. Reece, “Review of flash sintering: materials, mechanisms and modeling,” Adv. Appl. Ceram. 116 (1), 24–60.CrossRefGoogle Scholar
  18. 18.
    A. G. Zholnin, E. A. Klyatskina, E. G. Grigor’ev, M. D. Sal’vador, A. A. Misochenko, P. L. Dobrokhotov, M. G. Isaenkova, M. A. Sinaiskii, and V. V. Stolyarov, “Spark plasma sintering of an Al2O3–graphene nanocomposite material,” Fiz. Khim. Obrab. Mater., No. 4, 47–54 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. G. Zholnin
    • 1
    Email author
  • A. V. Tenishev
    • 1
  • V. V. Stolyarov
    • 2
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.Blagonravov Institute of Engineering Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations