Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 981–985 | Cite as

Wear Resistance of the Surface Layers in Silumin after Electron-Beam Treatment

  • D. V. ZagulyaevEmail author
  • V. E. Gromov
  • S. V. Konovalov
  • A. M. Glezer
  • S. V. Panin
  • Yu. F. Ivanov
ADVANCED MATERIALS AND TECHNOLOGIES

Abstract—The hardness and the tribological properties of the AK10M2N silumin subjected to irradiation by a high-energy pulsed electron beam with an energy density of 35 J/cm2 are studied. As compared to the as-cast state, the microhardness of the surface layers increases by ≈20% (up to ≈1.2 GPa), the friction coefficient decreases by a factor of ≈1.3 (down to 0.42), and the wear parameter decreases by a factor of ≈6.6 (down to 0.74 × 10–3 mm3/(N m)). These changes are shown to be caused by the dissociation of silicon and intermetallic compounds in the surface layer during irradiation by a high-energy pulsed electron beam.

Keywords: silumin electron-beam treatment structure surface layers friction wear resistance hardness 

Notes

FUNDING

This work was performed in terms of state assignment no. 3.1283.2017/4.6 and was supported in part by the Russian Foundation for Basic Research, project no. 16-43-700659.

REFERENCES

  1. 1.
    N. A. Belov, Phase Composition of Commercial and Promising Aluminum Alloys (MISiS, Moscow, 2010).Google Scholar
  2. 2.
    N. A. Belov, A. N. Alabin, A. V. Sannikov, N. Y. Tabachkova, and V. B. Deev, “Effect of annealing on the structure and hardening of heat-resistant castable aluminum alloy AN2ZhMts,” Metal Sci. Heat Treat. 56 (7–8), 353–358 (2014).CrossRefGoogle Scholar
  3. 3.
    V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and V. L. Yakushin, Promising Beam Irradiation Treatment Technologies for Metals: A Tutorial (Kruglyi Stol, Moscow, 2001).Google Scholar
  4. 4.
    A. B. Belov, O. A. Bytsenko, A. V. Krainikov, et al., High-Current Pulsed Electron Beams for Aircraft Engine Building, Ed. by A. S. Novikov, V. A. Shulova, and V. I. Engel’ko (Dipak, Moscow, 2012).Google Scholar
  5. 5.
    Evolution of the Surface Layer in Steel Subjected to Electron-Ion-Plasma Processing, Ed. by N. N. Koval’ and Yu. F. Ivanov (Izd. NTL, Tomsk, 2016).Google Scholar
  6. 6.
    Y. Ivanov, K. Alsaraeva, V. Gromov, S. Konovalov, and O. Semina, “Evolution of Al–19.4Si alloy surface structure after electron beam treatment and high cycle fatigue,” Mater. Sci. Techn. 31 (13A), 1523–1529 (2015).Google Scholar
  7. 7.
    K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebhyak, V. S. Rusakov, and T. E. Turkebaev, Ion-Beam and Ion-Plasma Modification of Materials, (Izd. MGU, Moscow, 2005).Google Scholar
  8. 8.
    V. V. Uglov, N. N. Cherenda, V. M. Anishchik, V. M. Astashinskii, and N. T. Kvasov, Modification of Materials by Compression Plasma Streams (BGU, Minsk, 2013).Google Scholar
  9. 9.
    V. L. Yakushin, “Modification of carbon and low-alloy steels by high-temperature pulsed plasma fluxes,” Russ. Metall. (Metally), No. 2, 104–114 (2005).Google Scholar
  10. 10.
    V. V. Budilov, K. N. Ramazanov, and R. K. Vafin, “Ion nitriding of tool steels with application of magnetic field,” Metal Sci. Heat Treat. 53 (7–8), 347–349 (2011).CrossRefGoogle Scholar
  11. 11.
    S. A. Ghyngazov, P. Vasil’ev, A. P. Surzhikov, T. S. Frangulyan, and A. V. Chernyavskii, “Ion processing of zirconium ceramics by high-power pulsed beams,” Techn. Phys. 60 (1), 128–132 (2015).CrossRefGoogle Scholar
  12. 12.
    N. K. Gal’chenko, S. I. Belyuk, K. A. Kolesnikova, V. E. Panin, and O. K. Lepakova, “Structure and tribological properties of the boride coatings deposited by electron-beam facing,” Fizich. Mezomekh., No. 8, 133–136 (2005).Google Scholar
  13. 13.
    A. V. Panin, E. A. Mel’nikova, O. B. Perevalova, Yu. I. Pochivalov, M. V. Leont’eva-Smirnova, V. M. Chernov, and Yu. F. Ivanov, “Formation of a nanocrystalline structure in the surface layers of EK‑181 steel during ultrasonic treatment,” Fizich. Mezomekh., No. 12, 83–93 (2009).Google Scholar
  14. 14.
    C. A. Schuh, “Nanoindentation studies of materials,” Mater. Today 9 (5), 32–40 (2007).CrossRefGoogle Scholar
  15. 15.
    S. V. Panin, A. E. Kolgachev, Yu. I. Pochivalov, V. E. Panin, and I. G. Goryacheva, “Increasing the wear resistance of a VT6 titanium alloy by nanostructuring the surface layer and subsequent thermochemical treatment,” Fizich. Mezomekh., No. 8, 101–104 (2005).Google Scholar
  16. 16.
    Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, D. V. Zagulyaev, and E. A. Petrikova, “Structure–phase state and properties of the surface of silumin after electron-beam treatment,” Deform. Razrushenie Mater., No. 10, 17–22 (2018).Google Scholar
  17. 17.
    A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Zagulyaev
    • 1
    Email author
  • V. E. Gromov
    • 1
  • S. V. Konovalov
    • 2
  • A. M. Glezer
    • 3
  • S. V. Panin
    • 4
  • Yu. F. Ivanov
    • 5
  1. 1.Siberian State Industrial UniversityNovokuznetskRussia
  2. 2.Korolev Samara National Research UniversitySamaraRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia
  4. 4.Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia
  5. 5.Institute of High Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations